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ANALYTIC POWER SERIES SOLUTIONS FOR TWO-BODY AND
J2–J6 TRAJECTORIES AND STATE TRANSITION MODELS

Kevin Hernandez∗, Julie L. Read∗, Tarek A. Elgohary†, James D. Turner‡, and
John L. Junkins§

Recent work has shown that two-body motion can be analytically modeled using
analytic continuation models, which utilize kinematic transformation scalar vari-
ables that can be differentiated to an arbitrary order using the well-known Leib-
niz product rule. This method allows for large integration step sizes while still
maintaining high accuracy. With these arbitrary order time derivatives available,
an analytical Taylor series based solution may be applied to propagate the posi-
tion and velocity vectors for the nonlinear two-body problem. This foundational
method has been extended to demonstrate a highly effective variable step-size con-
trol for the analytic continuation Taylor series model. The current work builds on
these earlier results by extending the analytic power series approach to trajectory
calculations for two-body and J2–J6 gravity perturbation terms.

INTRODUCTION

From Newtonian mechanics, the dynamics of the relative motion for the perturbed two-body
problem is given by,

r̈ = − µ
r3

r + ad (1)

where, r = [x, y, z]T is the inertial relative position, µ = G(m1 + m2) the gravitational mass
parameter, r =

√
r · r and ad refers to the perturbation acceleration. For the unperturbed/classical

two-body problem, ad = 0, Eq. (1) has an analytical solution extracted from the conservation of
angular momentum and the fundamental orbit integrals.1, 2 The Lagrange/Gibbs,“F&G”, solution
expresses the future state vector as a projection onto the initial position and velocity, where F and
G are themselves nonlinear function of the initial state.1, 2 The recursion of the equation produced
by successive differentiation has also been exploited to produce a power series based solution with
Lagrange Fundamental Invariants.1

For the general two-body problem, where ad 6= 0, several numerical techniques exist to handle
the solution of the nonlinear initial value problem (IVP) in Eq. (1). The Runge-Kutta, RK, family
of methods can be considered as the most widely used explicit methods for numerical integration.
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Adaptive step-size 4th-order RK methods have been developed and are known as the Runge-Kutta-
Fehlberg, RKF, methods.3 Higher order adaptive RK methods have also been developed for high
accuracy requirement applications. Adaptive Runge-Kutta-Nyström, RKN, methods with order 8(7),
9(8), 10(9) and 11(10) have been used to solve general second-order ordinary differential equations.4

For orbit propagation problems, the Gauss-Jackson method was studied extensively and compared
against other numerical techniques, e.g. RK4, RKN and analytical continuation based Taylor series
expansion.5 It is a predictor-corrector finite difference method designed specifically for solving
second order differential equations.6, 7 The RKN12(10) and RKN8(6) methods were introduced for
general dynamical systems.8 The methods were then compared against several Nyström methods
and recursive power series solutions for orbit propagation problems.9, 10 Furthermore, the accuracy
of several of the above mentioned numerical integrators are tested in solving different N -body
problems such as, Sun, Jupiter, Saturn, Uranus, and Neptune and nine planet problems.11 Most
of the comparisons performed in the literature address the issue of tuning the integration step-size
where the need for a high accuracy solution in many cases necessitates a small time-step.

Modified Chebyshev-Picard Iteration (MCPI) method has been developed for orbit propagation
and general initial value problems.12, 13 The method combines orthogonal basis functions, Cheby-
shev polynomials, with Picard iterations to solve the initial value problem (IVP). It is used in long-
term orbit propagation problems and shows improvement over the RKN12(10) in terms of com-
putational cost.12 Parallelization of MCPI is then explored and shows a substantial improvement
in computational cost over Runge-Kutta single-step methods for several initial value problems in-
cluding a near circular orbit for the classical two-body problem.13 Since the initial introduction
of MCPI, several contributions have been made to enhance the efficiency and the applicability of
the method to a variety of astrodynamics problems. High order gravity perturbation models have
been developed to capture motion of satellites near Earth.14 Some of the enhancements that have
been applied to MCPI include MATLAB libraries, variable fidelity and radially adaptive gravity
approximations, segmentation/order tuning, multi-orbit accuracy and numerical stability studies,
Kustaanheimo- Stiefel regularization and using the Method of Particular Solutions, MMS, to solve
Two-Point Boundary Value Problems (TPBVPs) and Optimal Control Problems (OCPs).15–22

Furthermore, Implicit Runge-Kutta methods, IRK, have been explored for orbit propagation pur-
poses.23–25 The methods generally show very good convergence characteristics as well as computa-
tional efficiency comparable to the industry standard 8th order Gauss-Jackson. Additionally, direct
collocation techniques with Radial Basis Functions (RBFs) have been used to investigate general
IVPs, Two Point Boundary Value Problems (TPBVPs), Optimal Control Problems (OCPs) and orbit
propagation problems. Similar to IRK methods, the proposed methods show fast convergence and
highly accurate results.26–28

Recent work by Turner and Elgohary has shown that Two-Body and J2 gravity perturbation terms
can be analytically modeled using Analytic Continuation (AC) methods.29–33 They demonstrate
that arbitrary order time derivatives for the trajectory motion can be generated by introducing three
steps. First, nonlinear kinematic transformations are introduced for representing the vector behavior
of the 3-D motion. Second, the two-body dynamics are transformed in terms of the new kinematic
variables, and Leibniz product rule is invoked to generate arbitrary order time derivative models.
Finally, a system-level recursive solution is achieved by linking the time derivative models for the
newly defined nonlinear transformation variables with the equation of motion model. The resulting
algorithm is fast, accurate, and simple to model. This work has been extended by Turner and Kim to
demonstrate a highly effective variable step-size control for the analytic continuation Taylor series
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model.34

The current work builds on these earlier results by extending the analytic power series approach
to the trajectory calculations of the two-body as well as J2–J6 gravity perturbation terms. The al-
gorithm is enhanced with a backward Horner summation and a variable time-step scheme, which
enable convergence to machine precision and arbitrary order expansions of the series. These de-
velopments overcome some of the numerical limitations on power series approximations for the
two-body problem and enable a fast, accurate and easy to implement solution algorithm. The basic
trajectory generation capabilities are further extended for the calculation of state transition matri-
ces. This is accomplished by partitioning the state transition matrix and evaluating the partitioned
components for arbitrary order time derivatives by invoking Leibniz product rule. Numerical results
from the series solution algorithm are introduced for three types of orbits for both the unperturbed
and the perturbed dynamics. The analytic continuation algorithm achieves high convergence up to
machine precision in conservation of total energy as well as in state error comparisons against F&G
and MCPI.

ANALYTIC CONTINUATION METHOD

Two nonlinear kinematic transformation scalar variables serve to eliminate fraction terms typi-
cally found in arbitrary order time derivative models and are defined by,29

f = r · r (2)

gp = f−p/2 (3)

where r is the position vector and p denotes factors 3, 5, 7, 9, . . . for the two-body, p = 3, and gravity
correction terms, p = 5, 7, 9, . . . . Here, f is a quadratic measure of distance and g is a constraint
equation based on f . Leibniz product rule is directly applied to f , where the product is the vector
dot product, and the nth order time derivative of f is computed as the dot product:

f (n) =

n∑

m=0

(
n

m

)
r(m) · r(n−m) (4)

where r(m) = dmr
dtm and

(
n
m

)
= n!

m!(n−m)! is the binomial coefficient. Note that all derivatives of r
must be computed prior to invoking the above equation. The key step involves replacing the ex-
pression for g with a first-order differential equation, which is easily handled by applying Leibniz
product rule to implement an implicit differential equation and consequently generate time deriva-
tives of f and g:

fġp +
p

2
gpḟ = 0 (5)

g(n+1)
p = − 1

f

[
p

2
f (1)g(n) +

n∑

m=1

(
n

m

)(p
2
f (m+1)g(n−m) + f (m)g(n−m+1)

)]
(6)
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Using these recursive solutions for f and g, we can recursively generate vector solutions for r(n)

to an arbitrary order. The perturbation term ad in Eq. (1) can also be expressed in terms of the f
and g scalars for J2–J6 zonal harmonics as:

aJ2 = −3

2
J2µr

2
eq




xg5 − 5xz2g7
yg5 − 5yz2g7
3zg5 − 5z3g7



 (7)

aJ3 =
1

2
J3µr

3
eq





5
(
7xz3g9 − 3xzg7

)

5
(
7yz3g9 − 3yzg7

)

3
(
g5 − 10z2g7 + 35

3 z
4g9
)



 (8)

aJ4 =
5

8
J4µr

4
eq





3xg7 − 42xz2g9 + 63xz4g11
3yg7 − 42yz2g9 + 63yz4g11
15zg7 − 70z3g9 + 63z5g11



 (9)

aJ5 =
1

8
J5µr

5
eq





3
(
35xzg9 − 210xz3g11 + 231xz5g13

)

3
(
35yzg9 − 210yz3g11 + 231yz5g13

)

693z6g13 − 945z4g11 + 315z2g9 − 15g7



 (10)

aJ6 = − 1

16
J6µr

6
eq





35xg9 − 945xz2g11 + 3465xz4g13 − 3003xz6g15
35yg9 − 945yz2g11 + 3465yz4g13 − 3003yz6g15
245zg9 − 2205z3g11 + 4851z5g13 − 3003z7g15



 (11)

where the values of the zonal harmonics, J2–J6 are given by:2

J2 = 1082.63× 10−6 J3 = −2.52× 10−6 J4 = −1.61× 10−6

J5 = −0.15× 10−6 J6 = 0.57× 10−6
(12)

and µ = 398600.4418 km3s−2 is the Earth gravitational parameter and req = 6378.1366× 103 km
is the Earth equatorial radius.

The corresponding classical power series solution technique expresses the evolved trajectory so-
lution as

r(t+ h) = r(t) + ṙ(t)h+
r̈(t)h2

2!
+

...
r (t)h3

3!
+ · · · (13)

v(t+ h) = ṙ(t) + r̈(t)h+

...
r (t)h2

2!
+

r(4)(t)h3

3!
+ · · · (14)

where h represents the time-step chosen for propagating the dynamics. As with any power series-
based approximation, the following issues must be addressed: (1) how many terms need to be
retained in the approximations, (2) how large can the step-size h be made for maintaining a speci-
fied level of position and velocity accuracy, (3) can variable step-size algorithms be developed for
accelerating the series approximations, and (4) what is the computational performance of the series
approximation when compared to other available approximation methods. Early numerical results
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obtained by summing the series from lowest-to-highest derivatives produce accurate and stable re-
sults depending on both the number of terms retained in the approximation and the size of the time
propagation step, h. However, initial efforts to increase the time step leads to numerical stability
issues.29, 31 To overcome this limitation the series solution is evaluated in reverse order using a
Horner summation scheme, which effectively sums the smaller terms first and enables a more stable
series solution at high orders. The reverse Horner scheme implemented in this work is shown in
Algorithm 1.

Algorithm 1 Reverse Horner Scheme
1: procedure HORNER–SCHEME

2: v1 = R(:,n-1) + (h/n)*R(:,n) . Initialize position vector summation
3: v2 = R(:,n) . Initialize velocity vector summation
4: for i = n-1→ 1 do . Loop for summing Taylor series terms
5: T = h/i . Time/factorial term ration
6: v1 = R(:,i-1) + T*v1 . sum i− 1 term for position
7: v2 = R(:,i) + T*v2 . sum i− 1 term for velocity
8: end for
9: xf = v1 . Update position vector

10: vf = v2 . Update velocity vector
11: end procedure

In addition, Kim and Turner determine a variable step size scheme using the expression in Eq. (15)
with increments that correspond to near-linear increments in true anomaly.34

h =

(
n! tol

|r(n)|

)1/n

(15)

where n denotes the order of the series expansion and tol defines the specified target tolerance.
The generation of the variable time-step h from (15) is a key decision that governs efficiency and
accuracy of the analytical continuation algorithm as will be shown.

Implementing all the above mentioned developments in the Analytic Continuation algorithm im-
proves the stability and the adaptability of the method to handle a variety of orbit propagation IVPs
as will be shown in the numerical results section. In addition, Leibniz rule as a fundamental con-
cept combined with the Analytic Continuation algorithm has a clear impact on deriving the State
Transition Matrix for various astrodynamics problems, as will be briefly shown below.

Development of the State Transition Matrix

State transition matrices (STMs) give us a measure of the uncertainty of the initial conditions and
can be computed by utilizing the scalar transformation variables at each time step. STMs are used
in many celestial mechanics optimization calculations, such as obtaining solutions for Lambert’s
problem. The series-based approach is extended to the state transition matrix calculation by the
following steps. The first order differential equation for the state transition matrix is given by

φ̇ = ∇f · φ (16)

This equation could be written using Leibniz’s product rule as
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φn+1 =
n∑

m=0

(
n

m

)
∇fnφn−m (17)

However, we can instead expand into partitions to obtain

[
φ̇11 φ̇12
φ̇21 φ̇22

]
=

[
03x3 I3x3
G3x3 03x3

] [
φ11 φ12
φ21 φ22

]
(18)

Hence,
φ̇11 = φ21 (19)

φ̇12 = φ22 (20)

φ̇21 = Gφ11 (21)

φ̇22 = Gφ12 (22)

where G is the gradient of the two-body and higher-order gravity correction terms.2 In this form,
the Leibniz product rule applies as follows:

φ
(n+1)
11 = φ

(n)
21 (23)

φ
(n+1)
12 = φ

(n)
22 (24)

φ
(n+1)
21 =

n∑

m=0

(
n

m

)
G(m)φ

(n−m)
11 (25)

φ
(n+1)
22 =

n∑

m=0

(
n

m

)
G(m)φ

(n−m)
12 (26)

which are trivially incorporated into a power series solution algorithm with the initial conditions
defined by the identity matrix, Φ(t0, t0) = I . This power series, given below, is computed for each
submatrix, and the final solution is then concatenated.

φ(t+ h) = φ(t) + φ̇(t)h+
φ̈(t)h2

2!
+

...
φ(t)h3

3!
+ · · · (27)

NUMERICAL SIMULATIONS RESULTS

The analytical continuation method is implemented for given initial position and velocity vectors,
time interval, derivative expansion order, and optionally a list of time instants at which the solution
must be computed (this enables comparing with other methods at the same nodes). The known po-
sition and velocity are computed, and the acceleration vector is evaluated. The first two derivatives
of f and g are computed analytically, and then recursive loops compute the higher derivatives for
f , g, and r. This process is analytically continued for position and velocity using a power series
expansion for all time steps until the final time is reached. Figure 1 gives an overview of the process.

Three different orbits were chosen to test the proposed method. For each case, both unperturbed
and J2-perturbed IVPs are numerically integrated with the Analytic Continuation, AC, algorithm.
The three types of orbits selected are:
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User-specified
input

t0, tf , n, tol

Initialize position
r, ṙ, r̈

Initialize f and
solve for ḟ and f̈

f = r · r
ḟ = 2r · ṙ

f̈ = 2(ṙ · ṙ + r · r̈)

Initialize gp and
solve for ġp and g̈p

gp = f−p/2

(p/2)ḟg + f ġ = 0
(p/2)(ḟ g+ f ġ) + ḟ ġ + f g̈ = 0

Recursively compute
for k = 3, · · · , n

r(k),f (k),g(k)

Compute time step size

h =

(
n! tol

|r(n)|

)1/n

Analytically continue
position and velocity

r(ti + h) =

∞∑

k=0

r(k)(ti)h
k

k!

ṙ(ti + h) =
∞∑

k=0

r(k+1)(ti)h
k

k!

Advance time
in simulation
ti ← ti + h

ti = tf? Stop

No

Yes

Figure 1. Flow Diagram for Analytical Continuation Solution Process
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• A geostationary orbit (GEO) initialized with initial position r0 = [4.224112, 0, 0]T × 107 m
and initial velocity v0 = [0, 3.071858, 0]T ×103 m/s; it has a semimajor axis a = 4.224112×
107 m and an eccentricity e = 0.

• An inclined, low earth orbit (LEO) initialized with initial position and initial velocity given by
r0 = [2.8654, 5.1911, 2.8484]T × 106 m, and v0 = [−5.3862,−0.3867, 6.1232]T × 103 m/s,
respectively; it has a semimajor axis a = 8.439279069×106 m and an eccentricity e = 0.672.

• A highly elliptical orbit (HEO) initialized at its perigee with initial position r0 = [7, 0, 0]T ×
106 m and initial velocity v0 = [0, 1.0401526536, 0]T × 104 m/s; it has a semimajor axis
a = 7.00025299× 107 m and an eccentricity e = 0.900.

For each case, the integration time was set to the unperturbed period for the given initial condi-
tions:

tf = T = 2π
a3/2√
µ

(28)

where µ is Earth’s gravitational parameter. The algorithm is forced to evaluate at the specified final
time. For the unperturbed case an orbit closure check is performed, i.e. the final state is compared
with the initial state as a measure of accuracy:

||εr|| =
||r(tf )− r(t = 0)||
‖r(t = 0)‖ (29)

||εv|| =
||v(tf )− v(t = 0)||
‖v(t = 0)‖ (30)

Additionally, the conservation of total energy generally given by Eq. (31) for up to the J2 zonal
perturbation is used as another accuracy check as shown in Eq. (32)

E(t) =
1

2
v(t)2 − µ

r(t)
− J2

2

µ

r(t)

(
req
r(t)

)2
(

3

(
z(t)

r(t)

)2

− 1

)

︸ ︷︷ ︸
Only when J2 is considered

+ · · ·︸ ︷︷ ︸
H.O.T.

(31)

εE(t) =

∣∣∣∣
E(t)− E(t0)

E(t0)

∣∣∣∣ (32)

Combining those two measures of accuracy produces confidence in the results shown below. The
results in the following subsections were obtained using tol = 10−15 and n = 28 for the variable
time step in Eq. (15), and an initial study on the combined effect of the order, n, of the analytical
continuation series expansion and tol is discussed later.

The Geostationary Orbit (GEO)

For the unperturbed case the simulation results generated by AC the algorithm uses 5 time-steps
to compute 1 orbit to machine precision as shown in Figure 2 for the conservation of total energy
check.

For the J2 perturbation, to maintain accuracy Equation 15 adapts the time step size in such a
manner that the number of steps is increased from 5, in the unperturbed case, to 6 for J2 perturbation.
Figure 3 shows the energy check results obtained from the AC algorithm.

Also, it is found that ||εr|| = 1.62616× 10−15 and ||εv|| = 6.28066× 10−16.
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Figure 2. Energy conservation check, unperturbed GEO.
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Figure 3. Energy conservation check, J2 GEO.
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The Low Earth Orbit (LEO)

For the unperturbed case the simulation results generated by AC the algorithm uses 15 time-steps
to compute 1 orbit to machine precision as shown in Figure 4 for the conservation of total energy
check.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−16

10
−15

10
−14

t/T

ǫ E

Figure 4. Energy conservation check, unperturbed LEO.

For the J2 perturbation, to maintain accuracy Eq. (15) uses the same number of time steps, but
it adapts when it is evaluated for J2 perturbation in order to maintain accuracy. Figure 5 shows the
energy check results obtained from the AC algorithm.

For this case, the orbit closure check resulted in near machine precision: ||εr|| = 4.69565×10−16

and ||εv|| = 6.36947× 10−16.

Of course, these very high precision closures are used to demonstrate the robustness of the nu-
merical method. We all understand that the physical precision of the J2-only perturbation is much
less. It is easy to relax the target tolerance and reduce the order of expansion as presented in (15) in
order to obtain closure errors consistent with the physical precision of a given force model.
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Figure 5. Energy conservation check, J2 LEO.

The Highly Eccentric Orbit (HEO)

For the unperturbed case, the simulation results generated by AC are shown in Figure 6 for the
conservation of total energy check. With 55 steps taken, energy is conserved to very high accuracy
as shown in Figure 6

For the J2 perturbation the algorithm uses 65 steps instead of 55 as in the unperturbed case. This
results in a better accuracy than the former case, but still not machine precision. Figure 7 shows the
energy check results obtained from the AC algorithm.

For this case, the orbit closure check resulted in ||εr|| = 1.47971× 10−12 and ||εv|| = 7.7887×
10−13. Clearly these closure errors remain very small compared to the physical accuracy of this
model, and in fact “state of the art” force models cannot predict orbit closure to better than ||εr|| ≈
10−7. In the next subsection we study the accuracy of the algorithm for different parameters to
understand this accuracy loss.
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Figure 6. Energy conservation check, unperturbed HEO.
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Figure 7. Energy conservation check, J2 HEO.
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Combined effect of n and tol

In order to study the combined effect of n and tol in (15), the J2 case was studied for the HEO
introduced above. The measure chosen to describe the accuracy of the method for a particular set
of parameter values is the sum of the squares of the residuals of energy normalized by the initial
energy:

||εE || =
(

nsteps∑

i=1

ε2E(ti)

)1/2

(33)

where ti correspond to the ith instant at which a solution was calculated. Figures 8 and 9 show
the results obtained varying the target tolerance values, tol, using double and quadruple precision
computations, respectively. The inclusion of quadruple precision computations addresses the ef-
fects of round-off errors (those resulting from finite memory for storing numbers and performing
computations) and provides a better way to assess the effect of the tuning parameters on the AC
achieved accuracy. For easier comparison, corresponding plots have the same scales regardless of
the particular area covered by the curves plotted. The effects of varying the order of expansion, n,
is shown in figures 10 and 11 for double and quadruple precision, respectively.

Comparing the double precision results with their quadruple precision counterparts suggest that,
even though reducing the value of tol in Eq. (15) reduces the accuracy of the algorithm for a fixed
expansion order n, this effect is bounded by the machine precision. When close to double pre-
cision’s limit, round-off errors become more important and reducing tol at that point have unpre-
dictable effects. For instance, the accuracy obtained for the example case studied using n = 15
and tol = 10−15 underperformed compared to the results obtained with tol = 10−10–10−14 when
using double precision, but expected behavior results from using quadruple precision to perform
computations using the same parameters.

The effect of the expansion order, n, is not trivial. Equation 15 shows factors may compete as
n is increased. Although the factor (n!)(1/n) increases with n, the same cannot be guaranteed for
the factor (1/||r(n)||)(1/n) and their rates may vary relative to one another. Figure 11 shows that
initially the accuracy for the case studied can be enhanced by incrementing n but, after a sweet spot
that seems to depend on the value of tol, this relation is reversed suggesting the nth derivative factor
starts increasing with n slower than the factorial part, resulting in larger step sizes that reduce the
overall performance.
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Figure 8. Effect of tol on ||εE || for different values of n. Results computed using
double precision. J2 case for HEO.
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Figure 9. Effect of tol on ||εE || for different values of n. Results computed using
quadruple precision. J2 case for HEO.
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Figure 10. Effect of n on ||εE || for different values of tol. Results computed using
double precision. J2 case for HEO.
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Figure 11. Effect of n on ||εE || for different values of tol. Results computed using
quadruple precision. J2 case for HEO.
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CONCLUSION

The algorithm presented in this paper computes arbitrary time derivatives of the perturbed two-
body problem using a recursive formulation. Energy conservation and orbit closure (for the unper-
turbed case) are used to measure algorithm accuracy, obtaining close-to-machine precision accuracy.
Effect of algorithm parameters on the accuracy of the solutions is examined and preliminary results
suggest that machine precision can be achieved but round-off errors start playing an important role.
Even though the adaptive time step size equation used improves largely over previous results, its
dependency on the expansion order is nontrivial; this relation will be studied further in the future.

The J2 term solution is enhanced to yield substantially more accurate results than previous stud-
ies. The present study provides a solution that is accurate but requires a small fraction of the sample
points compared with common integrators. This work is currently being expanded to include J3–J6
terms and the State Transition Matrix, where the methodology is presented in this paper. Both the
series trajectory and state transition matrix solutions are expected to be broadly useful for applica-
tions not requiring high-order gravity perturbation models.
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