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ABSTRACT
Aerodynamic forces for a 2-DOF aeroelastic system oscillat-

ing in pitch and plunge are modeled as a piecewise linear func-
tion. Equilibria of the piecewise linear model are obtained and
their stability/bifurcations analyzed. Two of the main bifurca-
tions are border collision and rapid/Hopf bifurcations. Contin-
uation is used to generate the bifurcation diagrams of the sys-
tem. Chaotic behavior following the intermittent route is also
observed. To better understand the grazing phenomenon sets of
initial conditions associated with the system behavior are defined
and analyzed.

NOMENCLATURE
α Pitch DOF
y Plunge DOF
αe f f Effective angle of attack
αstall Stall angle of attack
αswitch Angle of switch
αbound Angle of model bound
c0−c4 Line segments parameters
b Semichord of wing
S Wing span
m Mass of the system
ky Spring constant plinge DOF
kα Spring constant pitch DOF
cy Viscous damping plunge DOF
cα Viscous damping pitch DOF
Icg Mass moment of inertia

ρ Air density
L Aerodynamic lift
M Aerodynamic moment
U Freestream velocity

INTRODUCTION
Nonlinear analysis of airfoils is a topic that is extensively

covered in the literature [1–4]. In general, nonlinearities of air-
foils are structural and/or aerodynamic. A comprehensive anal-
ysis for such nonlinearities was presented in [4]. The equations
of motion of a 2D airfoil oscillating in pitch and plunge were
derived. Cubic, freeplay and hysteresis nonlinearities were in-
vestigated. Numerical simulations investigating system stability,
bifurcations and chaos were presented. Nonlinear aeroelasticity
and its effects on flight and its association with limit cycle oscil-
lations (LCO’s) was investigated in [1]. Gilliat et al. [2] investi-
gated both structural and aerodynamic nonlinearities with arising
from stall conditions.

An experimental investigation of structural nonlinearity with
emphasis given to continuous nonlinearities arising from spring
hardening/softening effects was presented in [5], [6]. The aeroe-
lastic response of a 2D airfoil with bilinear and cubic structural
nonlinearities was investigated in [7]. Numerical simulations ap-
plying the finite difference method were compared against the
analytical describing function method. LCO’s were found to ex-
ist at a velocity below the divergent flutter limit. Chaotic be-
havior was investigated with the application of preload and bi-
furcation diagrams showing period doubling were plotted as a
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result. Similarly, freeplay, hysteresis and cubic structural nonlin-
earitieswere analyzed in [8]. The flutter behavior of the airfoil
was found to be highly dependent on initial conditions. LCO’s
existence arising from those nonlinearities was also investigated.

Aerodynamics nonlinearities were investigated separately in
[9]. A typical airfoil section with transonic aerodynamic non-
linearities was analyzed using the describing function method.
Results compared to numerical methods were found to be very
close especially for small amplitudes of motion where the de-
scribing function method is very effective. Internal resonances
in a 2D airfoil model with aerodynamic nonlinearities arising
from dynamic stall was examined in [3]. The existence of in-
ternal resonances in specific classes of aeroelastic systems was
investigated which lead to instabilities that were not predicted by
traditional methods.

Combining both structural and aerodynamic nonlinearities
was investigated in the aeroelastic response of a non rotating he-
licopter blade in [10] and [11]. The airfoil model was a NACA
0012 with three cases of nonlinearities, nonlinear structure lin-
ear aerodynamics, linear structure nonlinear aerodynamics and
nonlinear structure with nonlinear aerodynamics, analyzed nu-
merically. Structural nonlinearities were modeled by stiffness of
freeplay whereas experimental data and curve fitting techniques
were used to model the nonlinear aerodynamic lift coefficient.
The flutter behavior in all cases was investigated and the ampli-
tudes of LCO’s were found to be dependent on freestream veloc-
ity and initial conditions. Chaotic behavior was also investigated
for forced and unforced cases with Poincaré maps for certain ve-
locities. Experimental and analytical results were found to be in
good agreement. Freeplay, cubic and hysteresis structural non-
linearities were also investigated on 2 DOF and 3 DOF models.
The analysis confirmed that the flutter amplitudes were largely
dependent on initial conditions.

Representing a nonlinear continuous system as piecewise
linear is generally used to approach the problem locally as in-
dependent linear systems which in many cases simplifies the
problem and makes the solution more tractable. This approach
was used in [12] with several problems involving forced and
free oscillations. Hysteretic systems are also analyzed using this
method, [13], where a hysteretic relay oscillator was analyzed,
explicit solution of the problem was found and Poincaré maps
of the system were constructed. In [14] and [15] the same ap-
proach was used to describe the behavior of an elasto-plastic
beam model. The authors showed the hysteretic behavior of
the system after finding the closed form solution of the prob-
lem and constructing a map for the determination of the plastic
cycles of the system. The problem was tackled with both free
and periodic impulse forcing oscillations. A piecewise linear os-
cillation model was utilized in [16] to analyze a single degree
of freedom nonlinear oscillator with nonlinearity in the restor-
ing force. The force was modeled as a piecewise linear func-
tion with a single change of slope. Poincaré maps of the sys-

tem was also analyzed and harmonic, sub harmonic and chaotic
motions were found with the bifurcations leading to them. Sim-
ilarly, in [17] and [18], two types of piecewise linear systems
were introduced and analyzed; systems with set up springs and
systems with clearances. Sub harmonic and chaotic motions of
those systems were also investigated and analyzed. Non smooth
continuous systems equilibrium points bifurcations were exam-
ined in [19]. The so called ’multiple crossing bifurcations’ where
the Eigenvalues jump more than once over the imaginary axis
were discussed for those types of systems with several examples
of systems with that type of bifurcation.

THE AEROELASTIC SYSTEM
Aerodynamic Forces

A comprehensive experimental study was presented in [20]
where lift coefficient vs. angle of attack data was collected for
seven airfoil sections. All seven sections data had a piecewise
linear nature similar to the NACA 0012 data shown in Fig. 1.

Motivated by the piecewise linear appearance of the data the
lift coefficient, Cl , is modeled as a piecewise linear function of
the effective angle of attackαe f f, Eqn. (1), which takes into
account the instantaneous motion of the system.

αe f f = α +
ẏ
U
. (1)

The piecewise linear model consists of three portions with
boundaries defined by three values ofαe f f designated asαstall,
αswitch andαbound, as shown in Fig. 1. The first value describes
the stall condition,αstall, at which lift starts to decrease asαe f f

is increased. The second value is a switching point at which the
slope ofCl starts to increase again,αswitch. The third and final
value defines the boundary of the model and consequently its va-
lidity over the presented range of angles of attack,αbound. To
sum upCl (αe f f) can be defined as

Cl (αe f f) =







































c0αe f f

for −αstall ≤ αe f f ≤ αstall

c1αe f f +sgn(αe f f)c2

for αstall ≤
∣

∣αe f f
∣

∣≤ αswitch

c3αe f f +sgn(αe f f)c4

for αswitch≤
∣

∣αe f f
∣

∣≤ αbound,

(2)

where,c0, c1, . . . ,c4 are parameters characterized by the slopes
describing the line segments of the lift function. Table 1 shows
the values of these parameters and the values of the angles defin-
ing the boundary of each line segment.
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FIGURE 1. PIECEWISELINEAR AERODYNAMIC MODEL

TABLE 1. LINE SEGMENTS PARAMETERS

Paramter Value

c0 5.932

c1 -6.846

c2 2.56

c3 2.662

c4 -0.2515

αstall 0.2 rad

αswitch 0.2957 rad

αbound 0.4712 rad

Dynamic model
The dynamicmodel is a typical 2 DOF, pitch and plunge,

aeroelastic system with the assumption that the aeroelastic axis
and the center of mass are collocated at three quarters of the
chord length, Fig. 2.
The system equations are given by

mÿ+cyẏ+kyy=−L(Cl (αe f f), (3)

Icgα̈ +cα α̇ +kα α = M(Cl (αe f f). (4)

L

M

y
α

k
y

k
αC.G.

b/2 b b/2

FIGURE 2. AEROELASTICSYSTEM

The aerodynamic lift and moment as functions of the lift coeffi-
cient are given by

L(Cl (αe f f))) = ρU2bSCl (αe f f), (5)

M(Cl (αe f f)) = ρU2b2SCl (αe f f). (6)

Table 2 shows the definition of all the system parameters shown
in Fig. 2 and Eqn. (3) through (6).
Equations (1) to (6) are nondimensionalized by a length scale,
L, a time scale,T, and a nondimensional freestream velocity,µ ,
given by

L2 =
Icg

ρb2S
, T2 =

m
ky
, µ =

U
L/T

. (7)

These scalesyield a nondimensional plunge, ˜y= y
L , a nondimen-

sionaltime,τ = t
T , and thederivative w.r.t nondimensional time

(τ), ()′ = d()
dτ . Carrying out the nondimensionalization of Eqn.

(1) to (6), and substituting with Eqn. (7) the system equations
can be expressed as

αe f f = α +
1
µ

ỹ′. (8)

For−αstall ≤ αe f f ≤ αstall

ỹ′′+(p1+ p2µc0)ỹ
′+ ỹ+ p2µ2c0α = 0,

α ′′+ p3α ′+(p4−µ2c0)α −µc0ỹ′ = 0,

(9)
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TABLE 2. SYSTEM PARAMETERS

Paramter Description Value/Units

b Semichord of wing 0.1064 m

S Wing span 0.6 m

m System mass 12 Kg

ky Spring constant plunge DOF 2844.4 N/m

kα Spring constant pitch DOF 2.82 N.m/rad

cy Viscous damping plunge DOF 27.43 Kg/s

cα Viscous damping pitch DOF 0.036 Kg.m2/s

Icg Mass moment of inertia 0.0433 Kg.m2

ρ Air density 1.2 Kg/m3

L Aerodynamic lift N

M Aerodynamic moment N.m

y Plunge DOF m

α Pitch DOF rad

U Freestream velocity m/s

For αstall ≤
∣

∣αe f f
∣

∣≤ αswitch

ỹ′′+(p1+ p2µc1)ỹ
′+ ỹ+ p2µ2c1α +sgn(αe f f)µ2c2 = 0,

α ′′+ p3α ′+(p4−µ2c1)α −µc1ỹ′+sgn(αe f f)µ2c2 = 0.
(10)

For αswitch≤
∣

∣αe f f
∣

∣≤ αbound

ỹ′′+(p1+ p2µc3)ỹ
′+ ỹ+ p2µ2c3α +sgn(αe f f)µ2c4 = 0,

α ′′+ p3α ′+(p4−µ2c3)α −µc3ỹ′+sgn(αe f f)µ2c4 = 0.
(11)

The nondimensional parametersp1, p2, p4 andp4 are given by

p1 =
cy

√

mky
, p2 =

√

ρ IcgS

m
,

p3 =
cα
Icg

√

m
ky
, p4 =

kαm
Icgky

.

(12)

THE BILINEAR MODEL
The governing equations of the bilinear model are extracted

from Eqn. (9) and (10) as

For −αstall ≤ αe f f ≤ αstall

ỹ′′+(p1+ p2µc0)ỹ
′+ ỹ+ p2µ2c0α = 0,

α ′′+ p3α ′+(p4−µ2c0)α −µc0ỹ′ = 0.

(13)

For αstall <
∣

∣αe f f
∣

∣

ỹ′′+(p1+ p2µc1)ỹ
′+ ỹ+ p2µ2c1α +sgn(αe f f)µ2c2 = 0,

α ′′+ p3α ′+(p4−µ2c1)α −µc1ỹ′+sgn(αe f f)µ2c2 = 0.
(14)

Equation (14) is assumed to be unbouded withαswitch→ ∞. This
assumption lets the bilinear model exceed the physical bounds of
the original aeroelastic system resulting in a more general solu-
tion that can be applied to several classes of problems, [21], [22].
Figure 3 shows the full bilinear model and the odd nature of the
lift coefficient funciton.
Using the state trnasformation

x1 = ỹ, x2 = ỹ′, x3 = α, x4 = α ′. (15)

Equations (8), (13) and (14) are put in state space form as

For −αstall ≤ αe f f ≤ αstall [System I]








ẋ1

ẋ2

ẋ3

ẋ4









=









0 1 0 0
−1 −(p1+ p2µc0) −p2µ2c0 0
0 0 0 1
0 µc0 −(p4−µ2c0) −p3

















x1

x2

x3

x4









.

(16)

For αstall <
∣

∣αe f f
∣

∣ [System II]








ẋ1

ẋ2

ẋ3

ẋ4









=









0 1 0 0
−1 −(p1+ p2µc1) −p2µ2c1 0
0 0 0 1
0 µc1 −(p4−µ2c1) −p3

















x1

x2

x3

x4









+









0
−p2µ2c2

0
µ2c2









sgn(αe f f).

(17)

where the two portions of the bilinear model are defined in Eqn.
(16) and (17) as System I and System II, respectively. A similar
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FIGURE 3. BILINEAR AERODYNAMIC MODEL

state transformation expression can also be shown forαe f f as

αe f f = x3+
1
µ

x2. (18)

Equilibrium Points
Each of System I and System II equilibria are obtained to

represent the overall bilinear system equilibrium points. System
I can be represented in the general formẋ = AI x hence its equi-
librium is xIeq =

[

0 0 00
]T

. For system II the general form is
ẋ = AII x+b. The equilibrium vector can be obtained from solv-
ing xIIeq =−A−1

II b. Hence,

xIIeq =±











−p2µ2c2+
p2µ4c1c2
−p4+µc1

0

− µ2c2
−p4+µ2c1

0











(19)

In order for this equilibrium to exist it has to lie within System II
domain. Hence, Eqn. (19) must satisfy the inequality condition
of System II in Eqn. (17). Substituting Eqn. (19) into Eqn. (18)
yields the value ofµ at which system II equilibrium exists in its
domain,µIIeq,

µ2
IIeq ≥

αstallp4

c2+αstallc1
. (20)

Stability Analysis
The characteristic polynomials for systems I and II are ex-

pressed as

For system I

fI (λ ) =λ 4+(p3+ p1+ p2µc0)λ 3

+(1+ p4−µ2co+ p3p1+ p3p2µc0)λ 2

+(p4p1+ p4p2µc0−µ2cop1+ p3)λ + p4−µ2co
(21)

For system II

fII (λ ) =λ 4+(p3+ p1+ p2µc1)λ 3

+(1+ p4−µ2c1+ p3p1+ p3p2µc1)λ 2

+(p4p1+ p4p2µc1−µ2c1p1+ p3)λ + p4−µ2c1
(22)

Applying the Líenard-Chipart stability criterion [23] to Eqn. (21)
and (22) the values ofµ for which each system is found to lose
stability is obtained.

For system I, µ2
I =

p4

c0
. (23)

For system II,

p4−µ2
II =

p4p1+ p3− p1c1µ2
II + p4p2c1µII

p3+ p1+ p2c1µII

(1+ p4+ p3p1−c1µ2
II + p3p2c1µII

−
p4p1+ p3− p1c1µ2

II + p4p2c1µII

p3+ p1+ p2c1µII
).

(24)

Figure 4(a) shows the eigenvalues behavior of System I as two
of the complex conjugate imaginary eigenvalues move towards
the origin. Atµ = µI they collide and become real with one on
the right half plane causing System I equilibrium to lose stabil-
ity. This is a case of colliding eigenvalues, [24], which atµ = µI

causes the trajectory to shift oscillatory to exponential as the so-
lution converges towards xIeq as shown in Fig. 5. For System II,
Fig. 4(b), a pair of complex conjugate eigenvalues cross to the
right half plane rendering System II equilibrium unstable.

Bifurcations Of Equilibrium Points
The bilinear system undergoes a border collision bifurca-

tion, [25], [26], as System I loses stability,µ = µI , exactly when
System II equilibrium lies on the boundary or the border between
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the two systems. Steps shown in Eqn. (25) show the derivation
of that phenomenon.

µ2
I =

p4

c0
=

p4αstall

c0αstall

System II equilibrium exists on the border at,

µ2
IIeq =

p4αstall

c1αstall +c2

At
∣

∣αe f f
∣

∣= αstall, c0αstall = c1αstall +c2

Hence,

µI = µIIeq

(25)
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As the value ofµ is increased two of the complex conjugate
eigenvalues of System II move towards the imaginary axis cross-
ing it at µ = µII , Fig. 4(b). System II stable node loses stability
and a stable limit cycle is created as a result of a rapid bifurca-
tion. Rapid bifurcations, [21] and [22], are analogous to Hopf
bifurcations in continuous systems [27], they differ in the limit
cycle amplitude propagation as it does not follow the square root
scaling rule where the amplitude is not proportional toO(µ 1

2 ).
The bifurcationdiagrams for the pitch and plunge DOF are gen-
erated numerically utilizing MATCONT, [28], as shown in Fig.
6(a) and 6(b), respectively.

NUMERICAL RESULTS
Numerical simulations for the bilinear system dynamics are

presented here. The phase portraits of the pitch DOF,(x3,x4)
plane, along with a projection of the(x3,x2) plane are presented.
This way both the system dynamics, represented in the pitch
DOF phase portrait, and the switching phenomenon are pre-
sented and the relation between them clarified. Chaotic behavior
of the system is also investigated and anlayzed numerically. The
complete set of results is preseneted in [29].
Figure 7 shows the convergence towards System I stable equilib-
rium, xIeq, for µ < µI . For µI < µ < µII trajectories converge
to System II stable equilibrium, xIIeq, as shown in Fig. 8. The
stable limit cycle arising from the rapid bifurcation for a value of
µ > µII is shown in Fig. 9. The chaotic behavior is investigated
numerically and presented as a demonstation of the full nonlinear
potential of piecewise linear systems. The chaotic behavior is ob-
served in the bilinear model dynamics via the intermittent route
to chaos, [30]. The bilinear model follows a type 1 intermittency
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as one of the Floquet multipliers crosses the unit circle along
the real axis at +1. This type of intermittency leads to bursts of
chaotic behavior with the existence of the stable periodic ampli-
tudes hence the name stable intermittency. This type has been
widely observed in many experiments in [31], [32] and [33]. The
numerical results, Fig. 10, show the chaotic behavior of the sys-
tem in the(x3,x2) plane as the values ofµ is changed. The stable
periodic amplitude can be observed around the switching lines
along with the chaotic jumps back and forth between them. The
coexistence of a pure periodic and a chaotic solution has been
observed at the same value ofµ = 0.7 as shown in Fig. 11. In
this case for the same value ofµ and depending on the initial

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x3

x4

 

 

Start Point
Switch Point
Equilibrium Points
End Point

(a) (x3,x4) PLANE

−0.2 −0.1 0 0.1 0.2

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x3

x2

 

 

Start Point
Switch Point
Switch Lines
Equilibrium Points
End Point

(b) (x3,x2) PLANE

FIGURE 7. SIMULATION FOR µ < µI ,µ = 0.15

conditions the system will converge to either a chaotic solution,
Fig. 11(a), or a stable periodic solution, Fig. 11(b).

SETS OF INITIAL CONDITIONS
In this section sets of initial conditions lying on the switch-

ing line are defined and analyzed to better understand and verify
the dynamical analysis of the bilinear system. The set of initial
conditions lying on the switching line,L, can be defined as,

L = {x|x2 = µ(±αstall −x3)} . (26)
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The equation of the switch line can be written as,

w(x3,x2) = x2− f (x3) where, f (x3) = µ(αstall −x3). (27)

Hence, the unit vector describing the equation of the switch line
is expressed as

v̂ = (v1,v2) =

(

1
√

1+µ2
,

−µ
√

1+µ2

)

(28)
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Taking the directional derivative ofw(x3,x2) along v̂ and sub-
stituting with the dynamics,L can be divided into three main
subsets based on the direction of the flow of a point inL. The
first subset, Eqn. (29), describes a point starting inL and moving
into System II crossing over from System I, Fig. 12(a). The sec-
ond subset, Eqn. (30), defines a point inL going into System I
crossing over from System II, Fig. 12(b). The third and final set,
Eqn. (31), describes points inL that do not cross to either system
but stay in the same domain. In other wordsSG set describes the
grazing case where a point touches the switching line and never
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FIGURE 10. INTERMITTENT CHAOTIC BEHAVIOR

crosses to the other side, Fig. 12(c).

SI−II =
{

x|x ∈ L, |x1−µx4|<−p1x2− p2µ2coαstall
}

(29)

SII−I =
{

x|x ∈ L, |x1−µx4|>−p1x2− p2µ2coαstall
}

(30)

SG =
{

x|x ∈ L, |x1−µx4|=−p1x2− p2µ2coαstall
}

(31)
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(b) PERIODIC SOLUTION,µ = 0.7

FIGURE 11. CO-EXISTENCE OF CHAOTIC AND PERIODIC SO-
LUTIONS @µ = 0.7

The subsets ofL in Eqn. (29, 30,31) are further disected into
smaller subsets.SI−II hasCI , Eqn. (32a), the set of initial condi-
tions inSI−II that in a finite timeT would come back and cross
the switch line as elements ofSII−I . EII , Eqn. (32b), the points
in SI−II that would ast → ∞ converge to system II equilibrium.
GII , Eqn. (32c), the points that in a finite timeT would come
back to the switch line and graze it without crossing to System I
hence belonging toSG. Finally H, Eqn. (32d), the set of points
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FIGURE 12. SUBSETS OFL

that would go unbounded ast → ∞.

CI = {~y|~y∈ SI−II ,~x(T) ∈ SII−I ,~x(0) =~y} (32a)

EII =
{

~y|~y∈ SI−II , lim
t→∞

~x(t) =~xIIeq,

~x(0) =~y,~x(t > 0) /∈ L
} (32b)

GII = {~y|~y∈ SI−II ,~x(T) ∈ SG,~x(0) =~y} (32c)

H =
{

~y|~y∈ SI−II , lim
t→∞

‖~x(t)‖= ∞,

~x(0) =~y,~x(t > 0) /∈ L
} (32d)

Similar to the subsets ofSI−II , SII−I can be disected in the same
manner. As shown in (33) there exists 3 main subsets to describe
the evolution of points inSII−I . CII , Eqn. (33a), for points com-
ing back to the switch line in finite timeT and crossing it as
elements ofSI−II . EI , Eqn. (33b), for points converging to xIeq
ast → ∞. Finally, GI , Eqn. (33c), for the grazing condition on
System I side of the switching line.

CI I = {~y|~y∈ SII−I ,~x(T) ∈ SI−II ,~x(0) =~y} (33a)

EI =
{

~y|~y∈ SII−I , lim
t→∞

~x(t) =~xIeq,

~x(0) =~y,~x(t > 0) /∈ L
} (33b)

GI = {~y|~y∈ SII−I ,~x(T) ∈ SG,~x(0) =~y} (33c)

It is clear that the definitions obtained for the various subsets ofL
agree with the results obtained from the stability analysis and the
bifurcation of equlibrium points. Those definitions can be con-
sidered an alternative way to analyze systems with switching sur-
faces. Another use for such subsets is to develop Poincaré maps
utilizing the relationships defined above and tracing the behavior
of a point on the switching line subject to the system dynamics.

DISCUSSION AND CONCLUSION
Nonlinear analysis of aeroelastic systems is a topic that has

been widely covered in the literature. The nonlinearities intro-
duced to aeroelastic systems can be either aerodynamic nonlin-
earities, structural nonlinearities or a mixture of both. Many
models were introduced to address these nonlinearities and study
their effects on aeroelastic systems. In this research project
aerodynamic nonlinearities arising from the stall behavior of an
aeroelastic system were studied. A piecewise linear model uti-
lizing experimental data for the lift coefficient versus the angle
of attack for a NACA 0012 airfoil was proposed and analyzed.

The piecewise linear model was proposed to describe the
lift coefficient as a function of the effective angle of attack. The
equations of motion for the system were introduced and nondi-
mensionalized. The nondimensionalizing introduced both time
and length scales that were used to nondimensionalize the sys-
tem states, pitch and plunge, along with the freestream velocity
which defined the system bifurcation parameter.
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A simplified bilinear model was then extracted from the full
piecewiselinear model and analyzed. Equilibrium points of the
bilinear model were found analytically and represented as a func-
tion of the bifurcation parameter. The stability of those equilib-
rium points was then checked applying the Liénard-Chipart theo-
rem. From the stability checks the values of the non dimensional
freestream velocity at which equilibrium points loses stability are
calculated. Bifurcation diagrams of the system are then shown
utilizing MATCONT. Two types of bifurcations are analyzed;
the border collision bifurcation which described the existence of
System II equilibrium and the loss of stability of System I and
the rapid bifurcation which explains the onset of a stable limit
cycle as system II loses stability. sets of initial conditions of the
system are introduced to describe the various system behavior
examined in the bifurcation diagrams and numerical simulation.
Those sets describe initial conditions starting on the boundary
between system I and II and how they get mapped with respect to
each other. Numerical results were also presented to show those
sets and the mapping between them. By defining and understand-
ing the behavior of those sets the system local and global behav-
ior is examined and analyzed. Finally, Chaotic behavior was also
investigated and observed in the intermittent route to chaos. The
system exhibited jumps from periodic to chaotic solutions. The
route to chaos and the coexistence of both periodic and chaotic
solutions were shown numerically. As a result of this study the
local and global system behavior was analyzed and understood.
Interesting phenomena was observed in this analysis such as the
intermittent chaotic behavior and the jumps between the system
boundaries associated with it. Also the analysis introduced new
types of bifurcations that are internsic to piecewise systems such
as border collision and the rapid bifurcations.

Finally, it is important to highlight that some of the results
presented in this work exceed the boundaries of the physical va-
lidity of the model for an airfoil. The chaotic behavior observed
can be attributed to the continuity of the model beyond the shown
range. The analysis was conducted on the bilinear model assum-
ing no restrictions on the range of the angle of attack. This en-
abled us to understand the full behavior of such models and their
behavior.
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