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A flexible rotating spacecraft is modeled as a three body hybrid system consisting of a
rigid hub a flexible appendage following the Euler-Bernoulli beam assumptions and a tip
mass and inertia. Hamilton’s extended principle is used to derive the equations of motion
and the boundary conditions of the system. This work compares the frequency domain
accuracy provided by series approximation methods versus analytical models. Applying
the Laplace transform to the integro-partial derivation equations of motion model, leads
to a generalized state space model for the frequency domain representation of the system.
Both approximate and exact transfer function models are developed and compared. Eigen
decomposition is used to solve the flexible appendage sub-problem and then to find the
solution for the full system of equations. The analytic frequency domain model is manip-
ulated by introducing a spatial domain state space, where a standard convolution integral
representation is used to invoke the boundary conditions that act at the tip mass for the
free end of the beam. Closed-form solutions are obtained for the convolution integral forc-
ing terms. The closed form solution is used to generate transfer functions for both the
rigid and the flexible modes of the system in terms of the input torque. A numerical ex-
ample is presented to compare the frequency response of the closed form solution transfer
function to the numerical assumed modes solution. The difference resulting from in the
natural frequencies resulting from the series truncation is highlighted and discussed. The
closed form solution proves to be more accurate with no truncation errors and is suitable
for control design iterations.

Nomenclature

E Appendage Young’s modulus
I Moment of inertia of appendage cross section about centroidal axis
Ihub Rigid hub moment of intertia
Itip Tip mass rotary inertia
L Appendage length
ρ Appendage mass per unit length
m Tip mass
r Hub radius
()′ d

dx

(̇) d
dt

θ Hub rotation
y Appendage deformation
VL Left eignevectors
VR Right eigenvectors
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I. Introduction

Modeling a rotating flexible spacecraft as a coupled rigid-flex hybrid system is a widely used modeling
practice for the dynamics and controls of such systems. Both Lagrangian and Eulerian approaches have been
introduced in several works to derive the governing equations for hybrid systems. A comparison between the
two approaches is introduced in1 where both methods produced the same results but the Eulerian approach
proved to provide a better insight on physics of the problem. In general, the resulting equations are coupled
integral partial differential equations developed in several works,.2–5 Solutions techniques presented in these
works are mainly numerical with finite elements methods and/or assumed modes techniques. Numerical
solutions in general are approximate and the accuracy is a function of the number of elements/modes chosen
which can impose a high computational cost as the need arises for more accurate results.

As a control problem, single axis rotating flexible spacecraft is addressed extensively utilizing several
controls and modeling schemes. The optimal control problem of a rotating hub with symmetric four flexible
appendages is presented as a numerical example in.6 The linearized system is constructed using the as-
sumed modes approach by defining an admissible function that is both differentiable and satisfies geometric
boundary conditions. The effectiveness of the minimization of the presented cost function is found to rely
on the number of modes retained in the series of the chosen admissible function and the small deflection
assumptions. The same problem is also addressed in4 where both finite elements techniques and the as-
sumed approach are used to construct the linearized problem. The natural frequencies of the system has
been calculated by solving the generalized eigenvalue problem and the various methods are compared in
terms of accuracy and the number of terms required to achieve it. Several other flexible structures examples
including the single axis rotating hub with four symmetric identical flexible appendages are presented in.7

The optimal control problem is again addressed for various control schemes and penalty functions includ-
ing free final time, free final angle and control rate penalty methods. Large angle maneuvers for a flexible
spacecraft is addressed in8 where a similar hub-four flexible appendages model is analyzed and the optimal
control problem for it is formulated addressing kinematic nonlinearities and the two-point boundary value
problem. In9 large angle maneuvers for the same model are considered. The optimal control problem with
a distributed control scheme is addressed and an iterative continuation technique is utilized to address the
kinematics nonlinearities. In a more recent work10 addressed the adaptive control problem for a similar
rigid hub flexible appendage model. The proposed control scheme is independent of the truncation gen-
erated from the flexible modes admissible function because no series approximations are introduced. The
system modeling parameters are explicitly handled in the governing integro-partial differential equation of
motion model. Several other works11–16 address similar problems with emphasis on optimality,11–13 and/or
robustness,.15,16 In the controls and robotics community the same models are used in flexible robotic arm
manipulators dynamics and controls.17 provides a comprehensive review of the literature in this area focus-
ing on works in the various robotics communities. The major contribution of this work in the development
of a exact transfer function model for a rotating flexible beam.

In18 an analytical transfer function for a rotating flexible spacecraft modeled as a rigid hub attached to a
free end flexible beam is introduced. The transfer function is used to analyze the frequency response of the
hybrid system. Numerical results are compared and verified against the assumed modes solution where the
truncation in the series solution is highlighted. In this paper, a more complicated model is proposed by adding
a tip mass with inertia at the end of the flexible beam which leads to more complicated boundary conditions
that must be enforced in the frequency domain. A generalized state state space model is constructed and
solved by means of eigen decomposition. A transformation to a more tractable complex representation is
used to develop frequency domain based closed form solution. The transfer function for the flexible mode is
then derived and the frequency response versus the assumed modes solution is compared. The development
of the closed form frequency response of the proposed model has several benefits in understanding the system
behavior and its exact natural frequencies. Also it can be utilized in developing accurate control schemes
that benefits from the existence of the exact solution.

II. The Model

The flexible spacecraft is modeled as a rotating rigid hub attached to a cantilevered flexible appendage
with a concentrated tip mass/inertia at its end as shown in figure 1. The hub rotates about its z-axis and
the appendage is allowed to have transverse motion about its y-axis. The appendage follows the standard
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Euler-Bernoulli assumptions with negligible shear deformation and negligible distributed rotary inertia. The
system equations of motion and boundary conditions are derived using the extended Hamilton’s principle.19

The equations are linearized by dropping the coupling term yθ̇. The inertial position of a point on the flexible
appendage is given by,

p = (x+ r) b̂1 + yb̂2 (1)

The velocity can then be expressed as,

v = ẏb̂2 + θ̇b̂3 ×
[
(x+ r) b̂1 + yb̂2

]
(2)

Neglecting the yθ̇ term in the velocity, the kinetic energy is then expressed as,4

T = Thub + Tappendage + Ttip

T =
1

2
Ihubθ̇

2 +
1

2

∫ L

0

ρ
(
ẏ + (x+ r)θ̇

)2
dx+

1

2
m
(

(r + L)θ̇ + ẏ(L)
)2

+
1

2
Itip

(
θ̇ + ẏ′(L)

)2 (3)

The potential energy for the flexible appendage is given by

V =
1

2

∫ L

0

EI (y′′)
2
dx (4)

The Lagrangian is given by,

L = T − V

L =
1

2
Ihubθ̇

2 +
1

2

∫ L

0

{
ρ
(
ẏ + (x+ r)θ̇

)2
− EI (y′′)

2
}
dx+

1

2
m
(

(r + L)θ̇ + ẏ(L)
)2

+
1

2
Itip

(
θ̇ + ẏ′(L)

)2
(5)

Applying Hamilton’s extended principle, the system governing equations of motion are,

Ihubθ̈ +

∫ L

0

ρ(x+ r)
(
ÿ + (x+ r)θ̈

)
dx+m(L+ r)

(
(L+ r)θ̈ + ÿ(L)

)
+ Itip

(
θ̈ + ÿ′(L)

)
= u

ρ
(
ÿ + (x+ r)θ̈

)
+ EIyIV = 0

(6)

Boundary conditions are also extracted from Hamilton’s extended principle as,

atx = 0 : y = 0, y′ = 0

atx = L : EI
∂3y

∂x3

∣∣∣∣
L

= m
(

(L+ r)θ̈ + ÿ(L)
)
, EI

∂2y

∂x2

∣∣∣∣
L

= −Itip
(
θ̈ + ÿ′(L)

) (7)

III. Generalized State Space (GSS)

Following the same approach presented in,18 a Generalized State Space system (GSS) is derived to express
the hybrid system in the frequency domain. First the Laplace transform of the equations of motion, Eq. (6),
is expressed as

µ2Jθ̄ + µ2ρ

∫ L

0

(r + x)ȳdx+ µ2m(r + L)ȳ(L) + µ2Itipȳ
′(L) = ū

µ2ρ
(
ȳ + (x+ r)θ̄

)
+ EIȳIV = 0

where, J ≡ Ihub +m(r + L)2 + Itip +

∫ L

0

ρ(r + x)2dx

(8)

Integration by parts is then utilized to decouple the deformation parameter y from the spatial variable x
such that, ∫ L

0

(r + x)ȳ dx = (r + x)

∫ L

0

ȳ dx−
x

ȳ dxdx′ (9)
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Figure 1. Flexible robotic arm manipulator with payload

Plugging Eq. (9) into Eq. (8) yeilds the generalized integral equation,

µ2Jθ̄ + µ2ρ

(
(x+ r)

∫ L

0

ȳ dx−
x

ȳ dxdx′

)
+ µ2m(r + L)ȳ(L) + µ2Itipȳ

′(L) = ū

µ2ρ

EI

(
ȳ + (x+ r)θ̄

)
+ ȳIV = 0

(10)

Similar to the equations of motion the boundary conditions are expressed in the Laplace/frequency domain
as,

atx = 0 : ȳ = 0, ȳ′ = 0

atx = L : ȳ′′′ =
µ2m

EI

[
(r + L)θ̄ + ȳ(L)

]
, ȳ′′ = −µ

2Itip
EI

[
ȳ′(L) + θ̄

] (11)

Eq. (10) leads to the definition of the state space system,

z1 =
s
ȳ dxdx′ z′1 = z2

z2 =
∫
ȳ dx z′2 = z3

z3 = ȳ z′3 = z4

z4 = ȳ′ z′4 = z5

z5 = ȳ′′ z′5 = z6

z6 = ȳ′′′ z′6 = −β
(
z3 + (r + x)θ̄

)
where, β ≡ µ2ρ

EI
(12)

with the associated boundary conditions,

atx = 0 : {Z} =
[

0 0 0 0 z5 z6

]T
atx = L : z5(L) = −α

[
z4(L) + θ̄

]
, z6(L) = γ

[
z3(L) + (r + L)θ̄

]
where, α ≡ µ2Itip

EI
and γ ≡ µ2m

EI

(13)
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The GSS is represented in the forced linear differential form {Z ′} = [A] {Z}+ {b} as,

{Z ′} =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 −β 0 0 0





z1

z2

z3

z4

z5

z6


+



0

0

0

0

0

−β(x+ r)θ̄


(14)

which along with the boundary conditions in Eq. (13) defines a 6×6 linear system of equations that describes
the frequency response of the hybrid dynamical system.

III.A. Beam sub-problem solution

The full solution of the 6× 6 GSS systems starts by solving the 4× 4 sub-matrix which defines the unforced
beam sub-problem. The beam sub-problem can be expressed as a 4× 4 system of equations as,

{p′} = [Q] {p}
where,

[Q] =


0 1 0 0

0 0 1 0

0 0 0 1

−β 0 0 0


(15)

Equation (15) is solved by obtaining the matrix exponential,,20 of [Q] or exp[Qx] by using eigen decomposi-
tion. First, the eigenvalues of [Q] are obtained

Λ = β1/4Diag

[
− 1√

i
−
√
i

1√
i

√
i

]
(16)

the right and left eigenvectors are then utilized to diagonalize [Q] and obtain the matrix exponential solution
as,

exp[Qx] = VR exp[Dx]V T

L

exp[Dx] =


e
− β

1/4
√
i
x

0 0 0

0 e−β
1/4
√
ix 0 0

0 0 e
β1/4√
i
x

0

0 0 0 e−β
1/4
√
ix

 (17)

Equation (17) yields the matrix exponential solution in the form,

exp[Qx] =


f −f ′′′/β −f ′′/β −f ′/β
f ′ f −f ′′′/β −f ′′/β
f ′′ f ′ f −f ′′′/β
f ′′′ f ′′ f ′ f

 (18)

where the function representing the diagonal element in Eq. (18) is given by,

f(x) = cos

(
β1/4x√

2

)
cosh

(
β1/4x√

2

)
(19)
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III.B. Full GSS solution

The 6× 6 GSS solution is then extracted from the beam sub-problem matrix exponential solution, Eq. (18),
with a similar structure given by,

exp[Ax] =



1 x −f ′′/β −f ′/β (1− f)/β (βx+ f ′′′)/β2

0 1 −f ′′′/β −f ′′/β −f ′/β (1− f)/β

0 0 f −f ′′′/β −f ′′/β −f ′/β
0 0 f ′ f −f ′′′/β −f ′′/β
0 0 f ′′ f ′ f −f ′′′/β
0 0 f ′′′ f ′′ f ′ f


(20)

The full solution for the system is known to have the general form,,20

{Z(x)} = exp[Ax] {Z(0)}︸ ︷︷ ︸
ZH

+

∫ x

0

exp [A(x− τ)] {b(τ)} dτ︸ ︷︷ ︸
ZF

(21)

The homogeneous solution ZH is then given by,

{ZH} =



(1− f)z5/β − (βx+ f ′′′)z6/β
2

−f ′z5/β + (1− f)z6/β

−f ′′z5/β − f ′z6/β
−f ′′′z5/β − f ′′z6/β
fz5 − f ′′′z6/β
f ′z5 + fz6


(22)

The convolution integral in Eq. (21) is then evaluated to obtain the forced part of the GSS solution as,

{ZF } =

∫ x

0

exp [A(x− τ)] {b(τ)} dτ = −βθ̄
∫ x

0

(r + τ)



(β(x− τ) + f ′′′(x− τ)) /β2

(1− f(x− τ)) /β

−f ′(x− τ)/β

−f ′′(x− τ)/β

−f ′′′(x− τ)/β

f(x− τ)


dτ (23)

In order to fully present the solution in a tractable form, it is observed that the function f representing the
various elements of the solution is the real part of the complex function

f = Re {cos(σx)} , where, σ ≡
√
i
√
β (24)

Using Eq. (24) to represent f makes the homogeneous solution in Eq. (22) appear as,

{ZH} =



(1− cos(σx))z5/β + (βx+ σ3 sin(σx))z6/β
2

σ sin(σx)z5/β + (1− cos(σx))z6/β

σ2 cos(σx)z5/β + σ sin(σx)z6/β

−σ3 sin(σx)z5/β + σ2 cos(σx)z6/β

cos(σx)z5 − σ3 sin(σx)z6/β

−σ sin(σx)z5 + cos(σx)z6


(25)

The elements of convolution integral presneted in Eq. (23) can then be evluated as follows:

I1(x) = 1
6β

(
−3βrx2 − βx3 + 6σ2r cos(σx) + 6σ sin(σx)− 6σ2r − 6σ2x

)
θ̄

I2(x) = 1
2σ2

(
−2σ2rx− σ2x2 + 2σr sin(σx)− 2 cos(σx) + 2

)
θ̄

I3(x) = 1
σ (σr cos(σx) + sin(σx)− σr − σx) θ̄

I4(x) = (−σr sin(σx) + cos(σx)− 1) θ̄

I5(x) = −σ (σr cos(σx) + sin(σx)− σr − σx) θ̄

I6(x) = − 1
σ2 (β (σr sin(σx)− cos(σx) + 1)) θ̄

(26)
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Equations (25) and (26) are combined to produce the full GSS solution as a function of z5 and z6. θ̄ is taken
out from the expressions of the convolution integrals presented in Eq. (26) to simplify the representation of
the full solution.

{Z(x)} =



(1− cos(σx))z5/β + (βx+ σ3 sin(σx))z6/β
2 + I1(x)θ̄

σ sin(σx)z5/β + (1− cos(σx))z6/β + I2(x)θ̄

σ2 cos(σx)z5/β + σ sin(σx)z6/β + I3(x)θ̄

−σ3 sin(σx)z5/β + σ2 cos(σx)z6/β + I4(x)θ̄

cos(σx)z5 − σ3 sin(σx)z6/β + I5(x)θ̄

−σ sin(σx)z5 + cos(σx)z6 + I6(x)θ̄


(27)

To complete the closed form solution an expression for z5 and z6 in terms of the given system parameters
is required. First, boundary conditions at the tip mass in Eq. (13) are imposed to express z5 and z6 as
functions of z3(L) and z4(L) such that,{

−α
(
z4(L) + θ̄

)
γ
(
z3(L) + (r + L)θ̄

) } =

[
cos(σL) −σ3 sin(σL)/β

−σ sin(σL) cos(σL)

]{
z5

z6

}
+

{
I5(L)

I6(L)

}
θ̄{

z5

z6

}
=

1

−β cos(σL)2 + σ4 sin(σL)2{ (
β(α+ I5) cos(σL)− σ3 sin(σL)(γ(r + L)− I6)

)
θ̄ − σ3γ sin(σx)z3(L) + αβ cos(σx)z4(L)

(β(α+ I5) sin(σL)− β cos(σL)(γ(r + L)− I6)) θ̄ − βγ cos(σx)z3(L) + αβσ sin(σx)z4(L)

} (28)

The final step is to solve for z3(L) and z4(L) in terms of the given system parameters. This is done by
substituting Eq. (28) in Eq. (27) and evaluating z3 and z4 at the tip of the beam. This results in a system
of equations in z3(L) and z4(L) that can be solved as follows,{

z3(L)

z4(L)

}
=

1

β

[
σ2 cos(σL) σ sin(σL)

−σ3 sin(σL) σ2 cos(σL)

]{
z5

z6

}
+

{
I3(L)

I4(L)

}
θ̄{

z3(L)

z4(L)

}
=

θ̄

−σ5γ sin(2σL) + (2αγ + β cos(2σL)− β)σ4 − σβγ sin(2σL) + β2 (cos(2σL) + 1)

(rγ + γL− I6)σ5 sin(2σL) + (β (cos(2σL)− 1) I3 + 2α (−γL+ I6 − γr))σ4

−2β (αI4 + α+ I5)σ2 + β (γr + γL− I6)σ sin(2σL) + β2 (cos(2σL) + 1) I3

(γ (−I3 − L− r) + I6 + (γr − I6 + γI3 + γL) cos(2σL))σ6 − γI4σ5 sin(2σL)

+ (−2γ (α+ I5) + βI4 (cos(2σL)− 1))σ4

+ (βγ (r + L+ I3) + β (I6 + γI3 + γL+ γr) cos(2σL)− βI6)σ2

−I4βγσ sin(2σL) + β2 (cos(2σL) + 1) I4



(29)

The solution of z3(L) and z4(L) in Eq. (29) concludes the full solution for Eq. (27). It must be highlighted
that in order to maintain the validity of the solution and meet the physical boundary conditions at both
ends of the flexible appendage, only the real part of the solution in Eq. (28) should be extracted to carry
out the rest of the derivation presented in Eq. (29). The real part of the result is then plugged back in the
full solution in Eq. (27) to represent the full GSS solution in terms of the given system parameters and the
value of the frequency represented in the µ term appearing both explicitly and implicitly as part of α, β, γ
and by definition σ. A numerical example is presented next to verify the validity of the GSS solution versus
numerical integration and to verify that the boundary conditions at both ends of the flexible appendage are
satisfied.

III.C. Analytical solution vs. numerical integration

The closed form solution presented in the previous section is compared against numerical integration of
system of equations in Eq. (14). Values from4 are used for the various system parameters as shown in
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Table 1. System Parameters Values

Parameter Value

Ihub 8 slug-ft2

ρ 0.0271875 slug/ft

E 0.1584× 1010 lb/ft2

L 4 ft

r 1 ft

I 0.47095× 10−7 ft4

m 0.1569 slug

Itip 0.0018 slug-ft2

table 1, Arbitrary values of µ2 = 4 and θ̄ = 0.1 are chosen in order to obtain values for α, β, γ and σ. Maple
built in numerical integrator, RK45, is utilized and the results are plotted along with the analytical solution
for the range of values of x = 0 · · · 4 ft along the beam length. Figure 2 shows the response for z3 vs. x using
both the analytical and the numerical methods. Figure 3 shows the error between the two methods in z3
along the length of the beam. Similar results of identical agreement can be obtained for the various variables

Figure 2. z3(x), numerical vs. analytical Figure 3. Error in z3(x) along appendage length

of the GSS model. Here, we are interested in z3 which represents the flexible appendage frequency response
ȳ that will be the subject of further analysis of the input/output transfer function of the appendage.

IV. Flexible Appendage Frequency Response

The analytical solution for the GSS is used to generate the frequency response of the flexible appendage.
The analytical solution is used to generate input/output transfer functions for both the rigid hub rotation
and the flexible beam deformation. For verification the transfer function results is compared against the well
known assumed modes method4 to verify the appendage natural frequencies.
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IV.A. GSS transfer function

From Eq. (27), Eq. (28) and Eq. (29) the analytical solution developed for the GSS model can be expressed
as a function of the system parameters, x and θ̄ as,

{Z(x)} =



g1(x)

g2(x)

g3(x)

g4(x)

g5(x)

g6(x)


θ̄ (30)

From Eq. (10), the transfer function for the rigid hub rotation, θ̄, can be expressed as,

µ2 [J +m(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))] θ̄ = ū

θ̄ =
ū

µ2 [J +m(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))]

(31)

From the GSS model presented in Eq. (12) and Eq. (30), ȳ can be expressed as,

ȳ = g3(x)θ̄ (32)

Substituting Eq. (31) into Eq. (32) yields the flexible appendage transfer function with the torque ū as input,

ȳ =
g3(x)

µ2 [J +m(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))]
ū (33)

IV.B. The assumed modes approach

The assumed modes solution has been a very reliable technique in addressing structural systems,.21 Following
the approach presented in4 the assumed modes approach is used as the numerical counterpart of the analytical
results presented in the previous section. In this approach the spatial and the time dependent components
of the beam response in Eq. (6) are decoupled by assuming the seperation of variables series solution,

y(x, t) =

N∑
i=1

qi(t)φi(x) (34)

The admissible function φi(x) describing the i-th spatial mode of the flexible appendage is defined as,

φi(x) = 1− cos(iπx)

L
+

1

2
(−1)i+1

(
iπx

L

)2

where, 0 ≤ x ≤ L
(35)

Using Eq. (34) and Eq. (35) with Eq. (3) and Eq. (4) and following the Lagrangian approach,

d

dt

(
∂T

∂x

)
− ∂T

∂x
+
∂V

∂x
= F (36)

the system of equations of motion is represented in the matrix form,[
J MT

θq

Mθq Mqq

]
ẍ +

[
0 0

0 Kqq

]
x =

{
u

0

}
(37)

where the elements of the mass and the stiffness matrices are defined as,

J = Ihub +m(r + L)2 + Itip +

∫ L

0

ρ(r + x)2 dx

[Mθq]i = ρ

∫ L

0

(r + x)φi(x) dx+m(r + L)φi(L) + Itipφ
′
i(L)

[Kqq]ij =

∫ L

0

φ′′i (x)φ′′j (x) dx

(38)
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The natural frequencies of the flexible mode can then be computed from solving the eigenvalue problem for
Eq. (37). Table 2 shows the first six flexible modes as calculated from solving the eigenvalue problem using
20 modes to construct the problem,

Table 2. Natural frequencies of the flexible appendage

Mode Number Natural Frequency ω (rad/sec)

1 5.531

2 51.7566

3 156.6555

4 306.0268

5 497.9744

6 751.0886

IV.C. GSS transfer function vs. Assumed modes frequency response

In this section a numerical comparison is conducted for the frequency response of the flexible appendage
calculated from the transfer function presented in Eq. (33) and the assumed modes solution presented in
table 2. Several ranges of natural frequencies, ω, are swept and the frequency responses for both the GSS
transfer function and the assumed modes are plotted. Figure 4shows the comparison for the first mode,
figure 5 highlights the second mode and figure 6 shows the range from the third to the sixth modes.
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The closed form frequency response presented agrees with and validates the numerical approximation of
the assumed modes. Truncation resulting from the assumed modes approximation can be highlighted when
compared to the accurate closed form results provided by the GSS transfer function. As expected the series
solution is seen to converge from above. In this case the second mode is accurately captured by both methods.
The first mode, however, is not captured well. For the shown range of frequencies the GSS solution proved
to be more accurate and free of truncation errors associated with approximated solution. These results can
be compared to more accurate numerical approximations utilizing finite elements or higher order assumed
modes to verify the achieved accuracy. Furthermore, by knowing the exact frequency response of the system
the door is open for more accurate controls schemes.

V. Conclusion

The hybrid rigid-flex model presented here is a widely used approximation for a rotating flexible space-
craft. The spacecraft is modeled as a three body system comprising a rigid rotating hub, a flexible appendage
and a point mass at the tip. The appendage is assumed to follow the Euler-Bernoulli’s beam assumptions.
Lagrange’s equation combined with Hamilton’s extended principle are used to derive the system equations of
motion and their associated boundary conditions. A key step is implemented by utilizing integration by parts
in the rigid mode equation to take out the explicit spatial dependency of the integral terms resulting from
the coupling between the rigid and the flexible modes. Laplace transform is then applied to the equations of
motion to formulate a frequency domain generalized state space system of equations. In order to solve the
linear system of equations the beam sub-problem is first addressed using the eigen decomposition method to
solve the matrix exponential problem. Results from the beam sub-problem are then used to solve for the full
system of equations. The solution is then represented as the real part of a much simpler complex function
that simplified the full solution to a single trigonometric function and its second and third order derivatives.
The boundary conditions are applied to solve for the state variables in terms of the known system parame-
ters. First, z5 and z6 are solved in term of z3(L) and z4(L), the third and fourth state variables evaluated at
the beam tip. Then, z3(L) and z4(L) are solved for in terms of the system parameters and back substituted
into z5 and z6 to complete the full closed form solution.

The closed form solution is verified versus numerical integration of the GSS system of equations and the
results agree to the extent of the machine precision. To further investigate the frequency response of the
system the closed form solution is used to generate input/output transfer function for both the rigid and
the flexible modes of the system. The frequency response of the transfer function is then compared to the
eigenvalues analysis resulting from the assumed modes approach. The presented numerical example clearly
highlights the truncation of the series in the assumed modes solution and the higher accuracy of the closed
form solution. The convergence also appears to occur from above which verifies the validity of the closed
form solution.

The resulting frequency domain analysis is a step to accurately calculate the natural frequencies of such
complicated hybrid systems. The existence of such accurate solution can extend to controls and optimization
applications. Also in the field of robotics the same model can be utilized for the optimization and control of
a flexible robotic appendage with and without a payload. Such applications can benefit tremendously from
the existence of the presented exact solution to better understand and control hybrid systems.
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