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A singularity-free perturbation solution is presented for inverting the Cartesian to Geodetic transformation. Geocentric latitude is
used to model the satellite ground track position vector. A natural geometric perturbation variable is identified as the ratio of the
major and minor Earth ellipse radii minus one. A rapidly converging perturbation solution is developed by expanding the satellite
height above theEarth and the geocentric latitude as a perturbation power series in the geometric perturbation variable.The solution
avoids the classical problem encountered of having to deal with highly nonlinear solutions for quartic equations. Simulation results
are presented that compare the solution accuracy and algorithm performance for applications spanning the LEO-to-GEO range of
missions.

1. Introduction

A frequent calculation for satellites in low Earth orbit (LEO)
to geosynchronous Earth orbit (GEO) involves inverting
transformations between 3D satellite Cartesian Earth centred
coordinates and geodetic coordinates. The geodetic coordi-
nates consist of 𝜆𝑔, 𝜙𝑔, and ℎ, which denote the geodetic
longitude of the satellite subpoint 𝑔, the geodetic latitude
of the satellite, and the height of the satellite above the
reference Earth elliptical surface along the surface normal
from the geodetic ellipsoid to the satellite position. Referring
to Figure 1, the transformation from geodetic coordinates to
Cartesian (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) coordinates is given by [1]

𝑥𝑠 = (𝑁(𝜙𝑔) + ℎ) cos𝜙𝑔 cos 𝜆𝑔,

𝑦𝑠 = (𝑁(𝜙𝑔) + ℎ) cos𝜙𝑔 sin 𝜆𝑔,

𝑧𝑠 = (𝑁(𝜙𝑔) (1 − 𝑒
2
) + ℎ) sin𝜙𝑔,

(1)

where𝑁(𝜙𝑔) = 𝑎/√ 1 − 𝑒2sin2𝜙𝑔 denotes the ellipsoid radius
of curvature in the prime vertical plane defined by vectors n̂
(ellipsoid outward normal) and 𝜏̂ (local east), ℎ is assumed

to lie along n̂, 𝑎 denotes the semimajor axis, 𝑏 denotes the
semiminor axis (Figure 2), and 𝑒 denotes the eccentricity
of the Earth’s reference ellipsoid. The solution for 𝜆𝑔 =

tan−1(𝑦𝑠/𝑥𝑠) is obtained by elementary methods.
Because of the fundamental problem of nonlinearity,

successive approximation strategies are required for 𝜙𝑔 and
ℎ. A two-step process is introduced to solve for 𝜙𝑔. First, one
inverts for the geocentric latitude, 𝜙𝑐, Figure 2; second, using
standard trigonometric identities, 𝜙𝑔 is recovered. A suc-
cessive approximation strategy is developed by introducing
a naturally available geometric perturbation variable, which
is defined as 𝑝 = 𝑎/𝑏 − 1 ∼ 0.0034. Rapidly convergent
approximations are obtained for 𝜙𝑐 and ℎ in the 𝜏 − 𝑧

plane by developing power series in the expansion variable
𝑝. Elementary vector methods are introduced for inverting
for the satellite height, ℎ. The resulting analytic perturbation
solutions are remarkably simple and computationally effi-
cient.

Many methods have been proposed for implementing
the inverse of the transformation presented in (1). The
nonlinear Cartesian-to-Geodetic transformation problem is
challenging, as geometrical singularities plague many solu-
tion strategies. The solution for the geodetic longitude,
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Figure 1: Geodetic and Cartesian coordinates.
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Figure 2: Geodetic versus geocentric latitude.

however, is elementary and noniterative. The most common
problem encountered is the need for handling sensitive
quartic polynomial solutions [2–5]. The analytic complexity
of the problem arises because the geodetic latitude and
satellite height solution algorithms are coupled and highly
nonlinear. Three classes of methods have been proposed:
(i) closed-form solutions for cubic and quartic polynomials,
(ii) perturbationmethods, and (iii) successive approximation
algorithms. The closed-form class of solution algorithms
typically introduces sequences of trigonometric transfor-
mations that exploit identities to simplify the governing
equation. Important examples of this approach include tha
following: (i) the very well-known solution in [6], where
the reduced latitude is iterated in Newton’s method; (ii)
a closed-form solution for a high-order algebraic equation
[7]; (iii) introducing the geodetic height of the satellite to
develop an elliptic integral-based arc-length solution [8]; (iv)
development of an approximate closed-form solution [9]; and
(v) introduction of complicated algebraic transformations to
develop a series solution [10]. Not only are the proposed
closed-form solutions highly accurate, but they are also
computationally expensive to perform.

Many iterative techniques have been proposed. Early
examples of this approach include thework of [1] which influ-
enced the GPS-based need for the geodetic transformation
methods developed by [11–13]. Several innovative problem
formulations have been proposed, including the work of [3, 5,
14, 15]. Unfortunately, geometric singularities plague many of
these iterative strategies. To avoid troublesome singularities,
several authors have investigated vector methods, including
the work of [4, 16]. In [17], an elegant optimization-based
strategy is presented. Accelerated convergence techniques are
considered by [18] who has presented a third-order version of
Newton’s method (known as Halley’s method). Recently, [19]
has presented a very fast singularity-free second-order per-
turbation solution that introduces an artificial perturbation
variable to transform the classical quartic solution problem
into a singularity-free noniterative quadratic equation prob-
lem. In a more recent addition to iterative methods [20], the
projection of a point on the reference ellipsoid is used to solve
a system of nonlinear equations using second- and third-
order Newton’s method. The results presented by the authors
show millimeter accuracy in height and 10−8 degree accuracy
in latitude with the third-order approach.

Themain contribution of this paper is the presentation of
a noniterative series-based solution algorithm that effectively
provides a closed-form solution for the Cartesian-to-Geodetic
transformation throughout the LEO-to-GEO range of appli-
cations.

2. Mathematical Formulation

The problem is formulated by introducing a local coordinate
system that tracks the local 𝑥-𝑦 axis motion of the satellite.
In the local coordinate system, a simplified perturbation
solution is developed in the 𝜏 − 𝑧 plane by defining a vector
constraint of the form

r − r𝑔 − ℎn̂ = 0, (2)

where r = (𝑟𝑥𝑦, 𝑧) denotes the satellite position vector, with

𝑟𝑥𝑦 = √𝑥2 + 𝑦2, r𝑔 = (𝑎 cos(𝜙𝑐), 𝑏 sin(𝜙𝑐)) denotes the satel-
lite ground track point, 𝜙𝑐 denotes the geocentric latitude, ℎ
denotes the height of the satellite above the Earth’s surface,
and n̂=(cos(𝜙𝑐)/𝑎, sin(𝜙𝑐)/𝑏)/√((cos(𝜙𝑐)/𝑎)

2
+ (sin(𝜙𝑐)/𝑏)

2
)

denotes the unit vector that is normal to the Earth’s surface
and points at the satellite. Expanding (2) provides two
necessary conditions:

𝑟𝑥𝑦 − 𝑎 cos (𝜙𝑐) −
ℎ cos (𝜙𝑐)

𝑎√((cos (𝜙𝑐) /𝑎)
2
+ (sin (𝜙𝑐) /𝑏)

2
)

= 0,

𝑧 − 𝑏 sin (𝜙𝑐) −
ℎ sin (𝜙𝑐)

𝑏√((cos (𝜙𝑐) /𝑎)
2
+ (sin (𝜙𝑐) /𝑏)

2
)

= 0.

(3)
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Clearly, the equations are highly nonlinear. To begin the
simplification process, one replaces 𝑎 in (3) with

𝑎 = 𝑏 (1 + 𝑝) , 𝑝 ≈ 0.00314, (4)

which exploits the natural parameter for the problem and
transforms (3) into

𝑟𝑥𝑦 − 𝑏 (1 + 𝑝) cos (𝜙𝑐)

−
ℎ cos (𝜙𝑐)

√((cos (𝜙𝑐))
2
+ ((1 + 𝑝) sin (𝜙𝑐))

2
)

= 0,

𝑧 − 𝑏 sin (𝜙𝑐) −
ℎ sin (𝜙𝑐)

√((cos (𝜙𝑐) /(1 + 𝑝))
2
+ (sin (𝜙𝑐))

2
)

= 0.

(5)

An approximate solution is recovered by assuming that
the geocentric latitude and satellite height are expanded in
the power series representations as follows:

𝜙𝑐 = 𝜙0 + 𝑝𝜙1 + 𝑝
2
𝜙2 + ⋅ ⋅ ⋅ ,

ℎ = ℎ0 + 𝑝ℎ1 + 𝑝
2
ℎ2 + ⋅ ⋅ ⋅ .

(6)

Introducing (6) into (5) and collecting terms in powers of
𝑝 yield the cascade of necessary conditions as follows:

𝑂(𝑝
0
) : ℎ0 = √𝑟

2
𝑥𝑦
+ 𝑧2 − 𝑏,

𝜙0 = 2 tan
−1
(

√𝑟
2
𝑥𝑦
+ 𝑧2

𝑧
−
𝑟𝑥𝑦

𝑧
) ,

𝑂 (𝑝
1
) : ℎ1 = −𝑏 cos (𝜙0)

2
,

𝜙1 =
𝑏 − ℎ0

2 (𝑏 + ℎ0)
sin (2𝜙0) ,

𝑂 (𝑝
2
) : ℎ2 =

𝑏 (3𝑏 − ℎ0)

8 (𝑏 + ℎ0)
sin (2𝜙0)

2
,

𝜙2 =
ℎ
2

0
− 4𝑏ℎ0 + 3𝑏

2

8(𝑏 + ℎ0)
2

sin (4𝜙0) +
sin (2𝜙0)

4
,

𝑂 (𝑝
3
) : ℎ3 =

𝑏 sin2 (2𝜙0)
8(𝑏 + ℎ0)

2
[(ℎ0−3𝑏)

2cos2 (𝜙0)+4𝑏 (ℎ0 − 𝑏)] ,

Table 1: List of polynomial coefficients.

Coefficient Expression
𝐶
1

−4ℎ
3

0
+ 37𝑏

3
− 66𝑏

2
ℎ
0
+ 33𝑏ℎ

2

0

𝐶
2

ℎ
3

0
− 31𝑏

3
+ 75𝑏

2
ℎ
0
− 33𝑏ℎ

2

0

𝐶
3

3𝑏 (𝑏
2
+ 3ℎ
2

0
− 6𝑏ℎ

0
)

𝐶
4

139𝑏
3
− 5ℎ
3

0
+ 49𝑏ℎ

2

0
− 143𝑏

2
ℎ
0

𝐶
5

ℎ
3

0
− 127𝑏

3
+ 163𝑏

2
ℎ
0
− 45𝑏ℎ

2

0

𝐶
6

4𝑏 (−10𝑏ℎ
0
+ ℎ
2

0
+ 5𝑏
2
)

𝐶
7

4ℎ
4

0
+ 118𝑏

4
+ 198𝑏

2
ℎ
2

0
− 266𝑏

3
ℎ
0
− 54𝑏ℎ

3

0

𝐶
8

−155𝑏
4
− 2ℎ
4

0
+ 67𝑏ℎ

3

0
+ 421𝑏

3
ℎ
0
− 315𝑏

2
ℎ
2

0

𝐶
9

49𝑏
4
− 15𝑏ℎ

3

0
− 185𝑏

3
ℎ
0
+ 135𝑏

3
ℎ
2

0

𝐶
10

2𝑏
2
(10𝑏ℎ

0
− 5ℎ
2

0
− 𝑏
2
)

𝜙3 =
sin (2𝜙0)
6(𝑏 + ℎ0)

3
[𝐶1cos

4
(𝜙0) + 𝐶2cos

2
(𝜙0) + 𝐶3] ,

𝑂 (𝑝
4
) : ℎ4 =

𝑏 sin2 (2𝜙0)
32(𝑏 + ℎ0)

3
[𝐶4cos

4
(𝜙0)+𝐶5cos

2
(𝜙0)+𝐶6] ,

𝜙4 =
sin (2𝜙0)
4(𝑏 + ℎ0)

4
[𝐶7cos

6
(𝜙0) + 𝐶8cos

4
(𝜙0)

+𝐶9cos
2
(𝜙0) + 𝐶10] .

(7)

Simple algebraic manipulations yield the ten coefficients
appearing in (7) as the polynomials presented in Table 1.

These analytic results are very compact for a fourth-order
perturbation expansion. The conversion from the geocentric
to the geodetic latitude is given by

𝜙𝑔 = tan−1 (
cos𝜙𝑐

𝑎/𝑏 sin𝜙𝑐
) . (8)

3. Numerical Results

The perturbation expansion method is used to carry out
the coordinate transformation for several cases of LEO-to-
GEO orbits. Using the WGS84, the forward transformation
is carried out first, then the perturbation solution is applied,
and the results are compared with the original values, which
represent exact values for the inverse solution. For the sake
of demonstration a longitude angle of 30∘ is utilized. The
geodetic latitude, 𝜙𝑔, is swept for angles from −90 to 90
degrees and the height is swept from 200KM (LEO) to
35,000KM (GEO). First, the expansion is carried to second
order, and the errors in latitude and height are plotted as
functions of the true latitudes and heights as shown in Figures
3 and 4, respectively. The expansion is then carried out to
third order, and the errors in latitude and height are plotted
in Figures 5 and 6, respectively. Finally, the fourth-order
expansion is utilized, and results are shown in Figures 7 and
8, respectively.

The improvement of accuracy is quite obvious as the
order of expansion is increased. A two-order-of-magnitude
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Figure 3: Errors in latitude, second-order expansion.
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Figure 4: Errors in height, second-order expansion.
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Figure 5: Errors in latitude, third-order expansion.

improvement is achieved by adding the third-order terms
to each of the coordinates. Another two-order-of-magnitude
improvement is achieved with the fourth-order terms. In
height, millimeter accuracy is achieved at the fourth-order
expansion level. This shows the fast convergence nature
and the accuracy of the perturbation solution. These results
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Figure 6: Errors in height, third-order expansion.
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Figure 7: Errors in latitude, fourth-order expansion.

demonstrate that higher-order approximations do not pro-
vide additional useful information for the inversion process.

4. Conclusion

Earth-Centered Earth-Fixed (ECEF) to geodetic coordinate
transformation has been examined with several numerical
and analytical approaches throughout the literature. A non-
iterative expansion-based approach inspired by the Earth’s
perturbed geometry is introduced in this work, where the
expansion parameter is nothing but the ratio of the Earth
semimajor axis and semi-minor axis subtracted from 1. The
expansion is carried out to second, third, and fourth orders.
A numerical example is introduced to compare the accuracies
at each order of expansion. Accuracies showed significant
improvements as the order of expansion is increased, and
the at fourth order, millimeter accuracy is achieved in height
and 10−11 degree error in latitude. Those errors at such low
orders of the expansion are proof of the effectiveness of the
method and its potential in solving such a highly nonlinear
transformation noniteratively. The method can be further
streamlined for timing studies, but in general it is a clean
straightforward approach to the coordinate transformation
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problem that utilizes a physical perturbation parameter and
that proved to be very accurate and efficient.
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