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Solution of Post-Buckling & Limit Load Problems,
Without Inverting the Tangent Stiffness Matrix & Without

Using Arc-Length Methods

T.A. Elgohary1, L. Dong2, J.L. Junkins3 and S.N. Atluri 4

Abstract: In this study, the Scalar Homotopy Methods are applied to the solution
of post-buckling and limit load problems of solids and structures, as exemplified by
simple plane elastic frames, considering only geometrical nonlinearities. Explicit-
ly derived tangent stiffness matrices and nodal forces of large-deformation planar
beam elements, with two translational and one rotational degrees of freedom at
each node, are adopted following the work of [Kondoh and Atluri (1986)]. By us-
ing the Scalar Homotopy Methods, the displacements of the equilibrium state are
iteratively solved for, without inverting the Jacobian (tangent stiffness) matrix. It is
well-known that, the simple Newton’s method (and the Newton-Raphson iteration
method that is widely used in nonlinear structural mechanics), which necessitates
the inversion of the Jacobian matrix, fails to pass the limit load as the Jacobian
matrix becomes singular. Although the so called arc-length method can resolve
this problem by limiting both the incremental displacements and forces, it is quite
complex for implementation. Moreover, inverting the Jacobian matrix generally
consumes the majority of the computational burden especially for large-scale prob-
lems. On the contrary, by using the presently developed Scalar Homotopy Meth-
ods, convergence near limit loads, and in the post-buckling region, can be easily
achieved, without inverting the tangent stiffness matrix and without using complex
arc-length methods. The present paper thus opens a promising path for conduct-
ing post-buckling and limit-load analyses of nonlinear structures. While the simple
Williams’ toggle is considered as an illustrative example in this paper, extension
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to general finite element analyses of space frames, plates, shells and elastic-plastic
solids will be considered in forthcoming studies.

Keywords: Nonlinear Algebraic Equations, Post-Buckling, Tangent Stiffness,
Newton’s Method, Scalar Homotopy Method

1 Solving NAEs without Inverting the Jacobian Matrix

A large number of problems in engineering and applied sciences, such as large
deformation solid mechanics, fluid dynamics, post-buckling of structural frames,
plates, and shells, etc, as characterized by nonlinear differential equations, will
lead to a system of nonlinear algebraic equations (NAEs) after discretization:
Fi(x1, . . . ,xn) = 0, i = 1, . . . ,n, or in their vector-form:

F(x) = 0, (1)

where F(x) ∈Rn is a given vector function, and x is the solution vector. To find the
unknown vector x ∈ Rn, the famous Newton’s method is widely used to iteratively
solve Eq. 1:

xk+1 = xk−B−1Fk

x0 = a
(2)

where, a represents the initial guess of the solution, B is the Jacobian (tangent
stiffness) matrix given by B = ∂F

∂x , and k denotes the number of iteration.

In computational solid mechanics, the trend over the past 30 – 40 years has been
to directly derive the tangent stiffness matrix, B, (rather than forming the nonlinear
equations, F(x) = 0) through incremental finite element methods [Crisfield (1983);
Kondoh and Atluri (1986); Riks (1972); Wempner (1971)]. Recently, however,
[Dai, Yue, and Atluri (2014)] directly derived the system of equations, F(x) = 0,
for a von Kármán plate theory using the Galerkin method.

As motivated by Eq. 2, [Hirsch and Smale (1979)] also introduced the continuous
Newton’s method:

ẋ =−B−1F(x), t > 0

x(0) = a
(3)

However, in order to find the solution, both the iterative as well as the continuous
Newton’s methods require the the inversion of the Jacobian matrix. On the one
hand, inverting the Jacobian matrix in each iteration is computationally very ex-
pensive. On the other hand, for complex problems where the Jacobian matrix may
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Figure 1: Newton’s Method Fails at Limit Points

be singular, such as near the limit-load points for geometrically nonlinear frames
or in elastic-plastic solids, the iterative as well as the continuous Newtons’s meth-
ods become problematic, as shown in Fig. 1. Various variants of the arc-length
methods have been widely used for marching through the limit-points, in post-
buckling analyses, such as those presented by [Wempner (1971); Riks (1972); Cr-
isfield (1983); Lam and Morley (1992)]. These methods generally involve complex
procedures by appending various constraints, and monitoring the eigenvalues of the
Jacobian matrices. It will be advantageous to have a method to find the solution-
s for post-buckling problems of structures without inverting the Jacobian matrix,
without using the arc-length method, and without worrying about initial guesses
for the Newton’s methods.

In order to eliminate the need for inverting the Jacobian matrix in the Newton’s
iteration procedure, [Liu and Atluri (2008a)] proposed an alternate first-order sys-
tem of nonlinear ODEs, for the solution of the NAEs, F(x) = 0, by postulating an
evolutionary equation for x, thus:

ẋ =
−ν

q(t)
F(x), t > 0 (4)

where ν is a nonzero constant and q(t) may in general be a monotonically increas-
ing function of t. In their approach, the term ν/q(t) plays the major role of being
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a stabilizing controller to help obtain the solution even for a bad initial guess, and
speeds up the convergence. This Fictitious Time Integration Method was success-
fully applied to the solution of various engineering problems in [Liu and Atluri
(2008a,b,c)]. In spite of its success, the Fictitious Time Integration Method was
postulated only based on an engineering intuition, does not involve the Jacobian
matrix at all, and was shown to only have local convergence.

The homotopy method, as firstly introduced by [Davidenko (1953)], represents
one of the best methods to enhance the convergence from a local convergence to
a global convergence. Previously, all the homotopy methods were based on the
construction of a vector homotopy function H(x, t), which serves the objective of
continuously transforming a function G(x) into F(x) by introducing a homotopy
parameter t (0 ≤ t ≤ 1). The homotopy parameter t can be treated as a time-like
fictitious variable, and the homotopy function can be any continuous function such
that H(x,0) = 0⇔ G(x) = 0 and H(x,1) = 0⇔ F(x) = 0.

Two of the most popular vector homotopy functions are the Fixed-point Homotopy
Function:

HF(x, t) = tF(x)+(1− t)(x−x0) = 0, 0≤ t ≤ 1 (5)

and the Newton Homotopy Function:

HN(x, t) = tF(x)+(1− t) [F(x)−F(x0)] = 0, 0≤ t ≤ 1 (6)

By using the vector homotopy method, the solution of the NAEs can be obtained
by numerically integrating:

ẋ =−
(

∂H
∂x

)−1
∂H
∂ t

, 0≤ t ≤ 1 (7)

As can be seen in Eq. 7, the implementation of the Vector Homotopy Method ne-
cessitates the inversion of the matrix ∂H

∂x at each iteration. In order to remedy the
shortcoming of the Vector Homotopy Method, [Liu, Yeih, Kuo, and Atluri (2009)]
proposed to solve the system of NAEs by constructing a Scalar Homotopy Function
h(x, t), such that h(x,0) = 0⇔ ‖G(x)‖= 0 and h(x,1) = 0⇔ ‖F(x)‖= 0. As an
example, the following Scalar Fixed-point Homotopy Function was introduced in
[Liu, Yeih, Kuo, and Atluri (2009)]:

h(x, t) =
1
2
[t‖F(x)‖2−(1− t)‖x−x0‖2], 0≤ t ≤ 1 (8)

However, it may be more convenient to to define homotopy functions with t ∈
[0,∞] instead of t ∈ [0,1], and use a positive and monotonically increasing function
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Q(t) to enhance the convergence speed. In this paper, we consider the following
two scalar homotopy functions, as denoted by the Scalar Fixed-point Homotopy
Function:

h f (x, t) =
1
2
‖F(x)‖2+

1
2Q(t)

‖x−x0‖2, t ≥ 0 (9)

and the Scalar Newton Homotopy function:

hn(x, t) =
1
2
‖F(x)‖2+

1
2Q(t)

‖F(x0)‖2, t ≥ 0 (10)

respectively.

By selecting a driving vector u so that the evolution of ẋ is parallel to u, the system
of NAEs can be solved by numerically integrating:

ẋ =−
∂h
∂ t(

∂h
∂x

)
·u

u, t ≥ 0 (11)

With different scalar homotopy functions h(x, t), different Q(t), and different driv-
ing vectors, u, Eq. 11 leads to different variants of scalar homotopy methods, see
[Liu, Yeih, Kuo, and Atluri (2009); Ku, Yieh, and Liu (2010); Dai, Yue, and Atluri
(2014)]. In this paper, we select u such that u = ∂h

∂x . Thus, if h f is to be used, Eq. 11
leads to:

ẋ =−1
2

Q̇‖F‖2

‖QBT F+x−x0||2
(
QBT F+x−x0

)
, t ≥ 0 (12)

and if hn is to be used, we have:

ẋ =−1
2

Q̇‖F‖2

Q‖BT F‖2 BT F, t ≥ 0 (13)

In this manuscript, Q(t) = et is used for simplicity, while various possible choices
can be found in [Dai, Yue, and Atluri (2014)].

For both of these two methods, the inversion of the Jacobian matrix is not involved.
However, if a scalar equation is to be considered, Eq. 13 will fail at where B = 0.
Therefore, Eq. 13 should only be used for non-scalar equations, while Eq. 12 can
be used for general scalar and vector NAEs.
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2 Solving the Williams’ Toggle with a Scalar Homotopy Method

2.1 The Classical Williams’ Solution

The classical toggle problem, as introduced by [Williams (1964)], comprising of
two rigidly jointed equal members of length l and angle β with respect to the hor-
izontal axis, and subjected to an externally applied vertical load W at the apex, is
shown in Fig. 2.

The structure deforms in a symmetrical mode as shown in Fig. 3 with the deflected
position of the neutral axis of member rs denoted by r′s′,

r

s
l l

Wβ

Figure 2: The classical Williams’ toggle

r,r′

s

s′

W

δ

Figure 3: Symmetrical deformation of toggle

Following the same assumptions and nomenclature in [Williams (1964)], the exter-
nally applied load W can be expressed in terms of the deformation at the apex, δ ,
through the following series of equations,

W
2
≈ F +Psinβ (14)

where, F is the component of the reaction force perpendicular to the undeflected
position of the neutral axis denoted here by rs and P is the component of the force
at the end of the member parallel to rs. P is expressed in terms of δ as:

P =
AE
l

(
δ sinβ −0.6

δ 2

l

)
(15)
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where, AE is the extensional rigidity of the member. F is then expressed in terms
of δ using nonlinear elastic stability theory as:

F =
6EI
l2 d5

δ

l
(16)

where d5 can be obtained by the following relations:

d5 = 2d4w(ρ)

d4 =
d3

3
d3 = d1 +d2

d2 = d1−w(ρ)

d1 =
1
2

[
π2ρ

4(1−w(ρ))
+w(ρ)

]
w(ρ) =

π

2
√

ρ cot
π

2
√

ρ

ρ =
π2EI

l2

(17)

Combining Eq. 14 through Eq. 17, for a given load W , the vertical displacement,
δ , of the Williams’ toggle can be found by solving the following scalar nonlinear
algebraic equation:

3AEsinβ

5l2 δ
2 +

(
6EId5

l3 +
AEsinβ

2

l

)
δ −W

2
= 0 (18)

In this study, the set of parameters l,EI,AE are considered to be the same as those
presented in [Williams (1964)], and are given in Tab. 1. By changing the height
of the apex of the toggle, three cases of interest are generated, as shown in Fig. 4.
The first case takes l sinβ = 0.32, which represents the original plot in [Williams
(1964)]. The second and third cases, l sinβ = 0.38 and l sinβ = 0.44, respectively,
show the effect of raising the apex on the load-deflection curve of the toggle, and
introduce limit points in the scalar NAE at which the Jacobian is singular.

2.2 Solving Williams’ Equation with a Scalar Homotopy Method

In order to characterize the deflection δ resulting from a specific external load, the
scalar NAE (Eq. 18) must be solved. To better understand the limitations on solv-
ing the NAE utilizing the classical Newton’s method, the behavior of the Jacobian
derived analytically from Eq. 18 is shown in Fig. 5 for the three values of l sinβ

introduced earlier.
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Table 1: Parameters set in [Williams (1964)]

Parameter Value Units
l 12.94 in

EI 9.27×103 lb/in2

EA 1.885×106 lb
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Figure 4: Three Cases of Load-Deflection Curves for Williams’ Toggle

Limit-points are those where the Jacobian becomes close to zero and thus clas-
sical Newton’s method will fail. For this end, the previously introduced Scalar
Homotopy Methods are used to avoid inverting the Jacobian for the solution of the
NAE. As discussed in Section 1, the Scalar Newton Homotopy Method (Eq. 13)
only works for a system of NAEs. Thus, the Scalar Fixed-point Homotopy Method
(Eq. 12) is adopted here for the solution of the scalar NAE of the Williams’ toggle.

Setting the tolerance to 10−6 for the original Williams’ toggle with l sinβ = 0.32,
the Williams’ equation can be solved for an arbitrary load, here chosen as W =
27.11 lb. A comparison between Newton’s Method and the Scalar Fixed-point
Homotopy Method is shown in Tab. 2

The comparison shows the fast convergence speed of Newton’s method achieving
the required accuracy in just 9 iterations whereas it took the Scalar Fixed-point



Solution of Post-Buckling & Limit Load Problems 551

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−700

−600

−500

−400

−300

−200

−100

0

100

δ ( in)

T
h
e
J
a
c
o
b
ia
n
,
B

 

 

l sinβ = 0.32

l sinβ = 0.38

l sinβ = 0.44

Figure 5: Scalar Jacobian Evaluation of Williams’ Scalar NAE

Table 2: Solution of Original Williams’ Equation with No Limit Points

Method No. Iteration, N Achieved Accuracy
Newton’s Method N = 9 6.4×10−7

Scalar Fixed-point Homotopy Method N = 30 8.9×10−7

Homotopy Method 30 iterations to achieve similar accuracy results. This case of
l sinβ = 0.32 as shown in Fig. 5 has no singularities in the Jacobian, thus the supe-
rior performance of Newton’s method is expected. Fig. 6 show the evolution of the
solution and the fast convergence of Newton’s Method as compared to the Scalar
Fixed-point Homotopy Method.

A second case is considered for l sinβ = 0.44 where the Williams’ equation is
solved for an externally applied load selected near the limit point, W = 43.79 lb.
Both Newton’s Method and the Scalar Fixed-point Homotopy Method are utilized,
and the results are shown in Tab. 3

After 1000 iterations Newton’s method did not converge to the solution whereas
the Scalar Fixed-point Homotopy Method achieved the required accuracy in 345
iterations. Fig. 7 shows a comparison between the evolution of the solution for
the two methods. It is shown that Newton’s method will keep fluctuating about
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the solution and not converge to achieve the required accuracy, whereas the Scalar
Fixed-point Homotopy Method converges to the solution with the required high
accuracy.
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Figure 6: Vertical Deflection vs. No. Iterations, l sinβ = 0.32

Table 3: Solution of Williams’ Equation for Loading near Limit Point

Method No. Iteration, N Achieved Accuracy
Newton’s Method N = 1000 0.044

Scalar Fixed-point Homotopy Method N = 345 7.6×10−7
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Figure 7: Vertical Deflection vs. No. Iterations, l sinβ = 0.44
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3 Application to Finite Element Analyses

3.1 A Generalized Finite Element Model for Frame Structures

The currently adapted Scalar Homotopy Methods can be easily combined with gen-
eral purpose nonlinear finite element programs, by taking the directly derived tan-
gent stiffness matrix at each iteration as the Jacobian matrix, and taking the differ-
ence between generalized internal force vector and the external force vector (the
residual) as F(x). In this manuscript, explicitly derived tangent stiffness matrices
and nodal forces of large-deformation beam-column members are adopted follow-
ing the work of [Kondoh and Atluri (1986)]. The basic derivations of [Kondoh and
Atluri (1986)] are briefly reviewed here.

First, the nomenclature and the sign convention used in the derivation for a general
beam column member are shown in Fig. 8. The functions w(z) and u(z) describe
the displacement at the centroidal axis of the element along the z and the x axes,
respectively. The angles θ ∗1 and θ ∗2 are the angles between the tangent to the de-
formed centroidal axis and the line joining the two nodes of the deformed element
at nodes 1 and 2, respectively. M1 and M2 are the bending moments at the two
nodes and N is the axial force in the beam member. The total rotation of the beam
member is then given by,

θ = θ̃ +θ
∗ (19)

where, θ̃ describes the rigid rotation of the beam member and is measured between
the line joining the two nodes of the deformed beam and the z-axis. θ̃ is expressed
in terms of the nodal displacements as,

θ̃ = tan−1
(

ũ
l + w̃

)
(20)

where, ũ = u2 − u1 and w̃ = w2 −w1. From Eq. 19 and Eq. 20, the non-rigid
rotations at the two nodes, θ ∗1 and θ ∗2 , are given by,

θ
∗
1 = θ1− tan−1

(
ũ

l + w̃

)
θ
∗
2 = θ2− tan−1

(
ũ

l + w̃

) (21)

The total stretch/deformation of the beam member is then expressed in terms of the
displacements at the two nodes as,

δ =
[
(l + w̃)2 + ũ2

]1/2
− l (22)
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1 2

l

z(w)
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Beam Member Before Deformation

Beam Member after Deformation & Sign Convention

1 S 2
−N −N

Q Q

l

δ

M1 −M2θ∗1

θ∗2

Figure 8: Kinematics & Nomenclature for a Beam Member

The axial force and bending moment are non-dimensionalized through,

n =
Nl2

EI
, m =

MI
EI

(23)

The non-rigid rotation and the non-dimensional bending moment are decomposed
into symmetric and anti-symmetric parts given by,

θ ∗a = 1
2 (θ

∗
1 +θ ∗2 ) , θ ∗s = 1

2 (θ
∗
1 −θ ∗2 )

ma = (m1−m2) , ms = (m1 +m2)
(24)

The relation between the generalized displacements and forces at the nodes of the
beam member is given by,

θ
∗
a = hama, θ

∗
s = hsms

δ

l
=

1
2

(
dha

dn

)
θ ∗2a

h2
a
+

1
2

(
dhs

dn

)
θ ∗2s

h2
s
+

N
EA

(25)
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where, ha and hs are given by,

for n≤ 0

ha =
1
−n
− 1

2(−n)1/2 cot

(
(−n)1/2

2

)
, hs =

1
2(−n)1/2 tan

(
(−n)1/2

2

)
for n > 0

ha =−
1
n
− 1

2(n)1/2 coth

(
(n)1/2

2

)
, hs =

1
2(n)1/2 tanh

(
(n)1/2

2

) (26)

The kinematics variables can then be expressed in a vector form for a beam member
m as,

{dm}=
[
w1 w2 u1 u2 θ1 θ2

]T (27)

The increment of the internal energy of a beam member is then expressed in terms
of the increment of kinematics variables vector, {dm}, the tangent stiffness matrix
[Km] and the internal force vector {Rm} as,

∆π =
1
2
{∆dm}T [Km]{∆dm}+{∆dm}T {Rm} (28)

The tangent stiffness matrix, [Km], and the internal force vector, {Rm}, for the
member m are given by,

[Km] = [Add ]−
1

Ann
{And}{And}T (29)

{Rm}= {Bd}−
1

Ann
{And} (30)

where the elements constructing Eq. 29 and Eq. 30 are given by,

[Add ] =



(
N ∂ 2δ

∂ w̃2 +Ma
∂ 2θ ∗a
∂ w̃2

+EI
l

1
ha

(
∂θ ∗a
∂ w̃

)2
)

[E]

(
N ∂ 2δ

∂ w̃∂ ũ +Ma
∂ 2θ ∗a
∂ w̃∂ ũ

+EI
l

1
ha

(
∂θ ∗a
∂ w̃

∂θ ∗a
∂ ũ

)) [E] EI
2lha

∂θ ∗a
∂ w̃ {I} EI

2lha

∂θ ∗a
∂ w̃ {I}(

N ∂ 2δ

∂ w̃2 +Ma
∂ 2θ ∗a
∂ w̃2

+EI
l

1
ha

(
∂θ ∗a
∂ w̃

)2
)

[E] EI
2lha

∂θ ∗a
∂ ũ {I} EI

2lha

∂θ ∗a
∂ ũ {I}

EI
4l

(
1
ha
+ 1

hs

)
EI
4l

(
1
ha
− 1

hs

)
Symmetric EI

4l

(
1
ha
+ 1

hs

)


(31)
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{And}=



(
∂δ

∂ w̃ + d
dn

(
1
ha

)
∂θ ∗a
∂ w̃ θ ∗a

)
{I}(

∂δ

∂ ũ +
d

dn

(
1
ha

)
∂θ ∗a
∂ ũ θ ∗a

)
{I}

1
2

(
d

dn

(
1
ha

)
θ ∗a +

d
dn

(
1
hs

)
θ ∗s
)

1
2

(
d

dn

(
1
ha

)
θ ∗a − d

dn

(
1
hs

)
θ ∗s
)


(32)

Ann =
l3

2EI

(
d2

dn2

(
1
ha

)
θ
∗2
a +

d2

dn2

(
1
hs

)
θ
∗2
s

)
− l

EA
(33)

{Bd}=



(
N ∂δ

∂ w̃ +Ma
∂θ ∗a
∂ w̃

)
{I}(

N ∂δ

∂ ũ +Ma
∂θ ∗a
∂ ũ

)
{I}

1
2 (Ma +Ms)
1
2 (Ms−Ma)

 (34)

Bn = δ +
1
2

d
dn

(
1
ha

)
θ
∗2
a l +

1
2

d
dn

(
1
hs

)
θ
∗2
s l− Nl

EA
(35)

{I}=
{
−1
1

}
[E] =

[
1 −1
−1 1

]
(36)

The load-deflection curve generated using the finite element model in Eq. 28 is
compared against the original Williams’ problem with l sinβ = 0.32 in Fig. 9. Oth-
er cases with l sinβ = 0.38 and l sinβ = 0.44 are shown in Fig. 10 and Fig. 11,
respectively. The Scalar Fixed Point Homotopy Method, Eq. 9, is used to gener-
ate the load-deflection curves for the finite element model for all three cases. As
shown, the finite element model accurately describe the load-deflection character-
istics of the Williams’ toggle as it agrees well with the solutions of the scalar NAE
presented in [Williams (1964)] and summarized in Eqs. 14 – 18. The Scalar Fixed-
point Homotopy Method method successfully solved the FEM equations capturing
the load-deflection relation around the limit points, at which the Newton’s method
fails to find the solution, as will be shown in this next subsection.

3.2 Solution of the Finite Element Model Using Scalar Homotopy Methods

The Scalar Fixed-point Homotopy Method, Eq. 12, and the Scalar Newton Ho-
motopy Method, Eq. 13, are both applied to the finite element model to solve for
the deflection given a specific load. As done in the previous section the case of
l sinβ = 0.44 is examined with the same value of the load applied near the lim-
it point. Setting the tolerance for the relative residual error to be 10−6, the two
methods are compared with Newton’s method and the results are shown in Tab. 4.

Both Scalar Homotopy Methods proved superior to the Newton’s method, as both
converged to the solution with the required accuracy whereas the Newton’s method
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Figure 9: Load-Deflection, Williams’ Equation & Finite Element, l sinβ = 0.32
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Figure 10: Load-Deflection, Williams’ Equation & Finite Element, l sinβ = 0.38
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Figure 11: Load-Deflection, Williams’ Equation & Finite Element, l sinβ = 0.44

Table 4: Solution of Finite Element Model for Loading near Limit Point

Method No. Iteration, N Achieved Accuracy
Newton’s Method N = 1000 4.2894

Scalar Fixed-point Homotopy Method N = 160 6.7×10−8

Scalar Newton Homotopy Method N = 500 2.4×10−8

failed to find the solution after 1000 iterations. A zoomed in plot is shown in
Fig. 12 to illustrate the oscillating behavior of Newton’s method and its failure
to find the solution. The Scalar Fixed-point Homotopy Method converged in 160
iterations (Fig. 13), which is about one third the number of iterations required by
the Scalar Newton Homotopy Method, (Fig. 14). This makes the Scalar Fixed-
point Homotopy Method more suitable for solving the problem of Williams’ toggle,
whereas the Scalar Newton Homotopy Method provides a valid alternative to obtain
the solution. The Scalar Homotopy Methods developed in this work and in previous
works are suitable to solve general nonlinear finite element models with very high
accuracy, without inverting the tangent stiffness matrix, and without having to use
the computationally expensive arc-length methods.

In order to illustrate the efficiency of the scalar homotopy methods the tolerance
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Figure 12: Residual Error in Newton’s Method
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Figure 13: Residual Error in Scalar Fixed-point Homotopy Method



560 Copyright © 2014 Tech Science Press CMES, vol.98, no.6, pp.543-563, 2014

50 100 150 200 250 300 350 400 450 500
−100

−80

−60

−40

−20

0

20

40

60

80

100

No. I terat ions, N

R
e
s
id
u
a
l
E
r
r
o
r

Figure 14: Residual Error in Scalar Newton Homotopy Method

Table 5: Solution of Finite Element Model for Loading near Limit Point

Method No. Iteration, N Achieved Accuracy
Newton’s Method N = 1000 0.3042

Fixed-point Homotopy Method N = 14 3.9×10−4

Newton Homotopy Method N = 14 4.02×10−4

for the relative residual error is relaxed to match existing finite element solvers
(0.1%). For this case an external load of 44 lb. is applied and the results are shown
in Tab. 5. The two methods achieved the required accuracy within 14 iterations,
which demonstrates the power of the scalar homotopy methods in solving engi-
neering problems and the fast convergence that can be achieved when addressing
such problems. The Newton’s method failed after 1000 iterations, with the same
oscillatory non-convergent behavior shown in Fig. 12. Figs. 15-16 show the path to
convergence of the Scalar Fixed-point Homotopy Method and the Scalar Newton
Homotopy Method, respectively.
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Figure 15: Residual Error in Scalar Fixed-point Homotopy Method
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Figure 16: Residual Error in Scalar Newton Homotopy Method



562 Copyright © 2014 Tech Science Press CMES, vol.98, no.6, pp.543-563, 2014

4 Conclusion

The Scalar Homotopy Method is applied to the solution of post-buckling and limit
load problems of plane frames considering geometrical nonlinearities. Explicit-
ly derived tangent stiffness matrices and nodal forces of large-deformation beam-
column members are adopted following the work of [Kondoh and Atluri (1986)].
By using the Scalar Homotopy Method, nodal displacements of the equilibrium s-
tate are iteratively solved for, without inverting the Jacobian (tangent stiffness) ma-
trix and without using complex arc-Length methods. This simple method thus saves
computational time and avoids the problematic behavior of the Newton’s method
when the Jacobian matrix is singular. While the simple Williams’ toggle is con-
sidered in this paper, extension to general finite element analyses of space frames,
plates, shells and elastic-plastic solids will be considered in forthcoming studies.
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