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Time Domain Inverse Problems in Nonlinear Systems
Using Collocation & Radial Basis Functions
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Abstract: In this study, we consider ill-posed time-domain inverse problems
for dynamical systems with various boundary conditions and unknown controllers.
Dynamical systems characterized by a system of second-order nonlinear ordinary
differential equations (ODEs) are recast into a system of nonlinear first order ODEs
in mixed variables. Radial Basis Functions (RBFs) are assumed as trial functions
for the mixed variables in the time domain. A simple collocation method is de-
veloped in the time-domain, with Legendre-Gauss-Lobatto nodes as RBF source
points as well as collocation points. The duffing optimal control problem with var-
ious prescribed initial and final conditions, as well as the orbital transfer Lambert’s
problem are solved by the proposed RBF collocation method as examples. It is
shown that this method is very simple, efficient and very accurate in obtaining the
solutions, with an arbitrary solution as the initial guess. Since methods such as the
Shooting Method and the Pseudo-spectral Method can be unstable and require an
accurate initial guess, the proposed method is advantageous and has promising ap-
plications in optimal control and celestial mechanics. The extension of the present
study to other optimal control problems, and other orbital transfer problems with
perturbations, will be pursued in our future studies.
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1 Introduction

A second-order system of nonlinear ordinary differential equations (ODEs) can, in
general, be recast as a system of first-order ODEs in mixed variables [in the sense
defined in Atluri (2005); Dong, Alotaibi, Mohiuddine, and Atluri (2014)] as,

ẋxx = ggg(xxx, fff , t) , t0  t  tF (1)

where xxx is the vector of mixed variables, xxx ⌘ [xxx1,xxx2]T, ẋxx1 = xxx2, fff is the force applied
to the system, and t is the time with t0, tF the initial and final time, respectively. For
a specified set of initial conditions xxx0, and being given the force function fff (t), the
initial value problem (IVP) of Eq. 1 is well-posed and the solution methodologies
are well understood. On the other hand, the inverse problem requiring the solu-
tion of the unknown initial conditions, given a prescribed final state, is considered
ill-posed. In that sense, Eq. 1 is ill-posed if the full final state vector, xxx(tF), is
prescribed or, in case of split boundary conditions when both xxx1(t0) and xxx1(tF) are
prescribed; or when xxx1(t0) and xxx2(tF) are both prescribed; or when xxx2(t0) and xxx1(tF)
are both prescribed; or when xxx2(t0) and xxx2(tF) are both prescribed; or when fff (t) is
an unknown function to be solved for.
For the majority of applications, fff (t) can not be arbitrary and a minimization
scheme is introduced to meet a set of engineering requirements. Among those class
of problems is the given-time-interval optimal control problem found in several
classical works, [Bryson and Ho (1975); Lewis and Syrmos (1995)]. The problem
is generally given as,

Min: J = f(xxx(tF), tF)+
Z tF

t0
L(xxx, fff , t)dt

Subject to: ẋxx = ggg(xxx, fff , t), t0  t  tF
(2)

where the objective is to minimize a prescribed performance index J along the
trajectory of the system dynamics given by ggg(xxx, fff , t). The methodology to obtain
the solution for the optimal control force in Eq. 2 is presented in several text books,
see [Bryson and Ho (1975); Lewis and Syrmos (1995)] and/or [Lewis, Vrabie, and
Syrmos (2012)], based on the calculus of variations, by using Lagrange multipliers
to obtain the augmented performance index, Ja:

Ja = f(xxx(tF), tF)+
Z tF

t0

�
L(xxx, fff , t)+lll T [ggg(xxx, fff , t)� ẋxx]

 
dt (3)

The scalar Hamiltonian function is then defined as,

H = L(xxx, fff , t)+lll Tggg(xxx, fff , t) (4)
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and the augmented performance index can then be re-written as:

Ja = f(xxx(tF), tF)+
Z tF

t0

�
H �lll Tẋxx

�
dt (5)

The variation of the augmented performance index, dJa, is then expressed in terms
of the variations of xxx, lll , and fff :

dJa = f T
xxx dxxx|tF +

Z tF

t0

⇥�
HT

xxx dxxx�lll Td ẋxx
�
+
�
HT

lll dlll � ẋ̇ẋxTdlll
�
+HT

fff d fff
⇤

= (fxxx �lll )T dxxx
��
tF
+ lll Tdxxx

��
t0

+
Z tF

t0

h⇣
Hxxx + l̇ll

⌘T
dxxx+(Hlll � ẋxx)T dlll +HT

fff d fff
i

dt

(6)

where ()⇤ =
∂ ()
∂⇤ . The stationarity of Eq. 6 necessitates vanishing of

R tF
t0 [(Hxxx +

l̇ll )Tdxxx+(Hlll � ẋxx)Tdlll +HT
fff d fff ]dt, leading to the following 3 Euler-Lagrange equa-

tions:

ẋxx =
∂H
∂lll

= ggg(xxx, fff , t)

�l̇ll =
∂H
∂xxx

=
∂L
∂xxx

+


∂ggg
∂xxx

�T

lll

000 =
∂H
∂ fff

=
∂L
∂ fff

+


∂ggg
∂ fff

�T

lll

(7)

And depending on what are prescribed for the states of xxx(t0) and xxx(tF), some com-
plementary boundary conditions at t0 and tF can be obtained from the vanishing of
(fxxx �lll )T dxxx

��
tF
+ lll Tdxxx

��
t0

, as is listed in detail in Tab. 1.

Table 1: Various Cases of Ill-posed Problems Considered in This Study

Prescribed boundary conditions Complementary boundary conditions
xxx(t0) prescribed lll (tF) = fxxx|tF

xxx(t0) and xxx1(tF)prescribed lll 2(tF) = fxxx2 |tF
xxx1(t0) and xxx1(tF) prescribed lll 2(t0) = 000, lll 2(tF) = fxxx2 |tF
xxx1(t0) and xxx2(tF) prescribed lll 2(t0) = 000, lll 1(tF) = fxxx1 |tF
xxx2(t0) and xxx1(tF) prescribed lll 1(t0) = 000, lll 2(tF) = fxxx2 |tF

Several solution techniques exist for such problems. The shooting method, see
[Press, Teukolsky, Vetterling, and Flannery (2007)], is one of the most widely used
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approaches in the optimal control literature. Starting with an initial guess for the
unknown initial conditions, the system of equations is integrated and matched with
the terminal conditions. By examining the sensitivity, the initial guess is iteratively
updated until an acceptable tolerance is achieved at the terminal boundary. The
main disadvantage of the shooting method is that a good initial guess is generally
required to achieve convergence, which in turn requires the user to have a deep
insight of the physical and the mathematical properties of the problem, [von Stryk
and Bulirsch (1992)].
By using different trial and test functions, Eq. 7 lends itself to a wide spectrum of
solution methodologies [Atluri (2005)], such as collocation, finite volume, Galerkin,
MLPG, etc. In [Dong, Alotaibi, Mohiuddine, and Atluri (2014)] a comprehen-
sive review of various computational methods is presented and used to solve well-
posed and ill-posed problems of a fourth order ODE describing a beam on an e-
lastic foundation. In [Dai, Schnoor, and Atluri (2012); Dai, Yue, Yuan, and Atluri
(2014)], a collocation method with harmonic trial function was developed for s-
tudying the nonlinear responses of aeroelastic system. In this study, a simple collo-
cation method is developed, with radial basis functions as trial functions, to tackle
various time-domain inverse problems in nonlinear systems. Detailed formulations
and numerical examples are given in the following sections.

2 Direct Collocation & Radial Basis Functions

One direct collocation method in optimal control is the pseudo-spectral method.
It transforms the set of nonlinear ODEs into a nonlinear programming problem
(NLP) by using global polynomials and collocating at Gauss quadrature nodes.
The methods were successfully implemented in NASA missions for the Interna-
tional Space Station (ISS) [Kang and Bedrossian (2007)] and the space telescope
TRACE [Ross and Karpenko (2012)]. Legendre or Chebyshev polynomials were
used as trial functions in [Elnagar, Kazemi, and Razzaghi (1995); Benson, Hunting-
ton, Thorvaldsen, and Rao (2006); Fahroo and Ross (2001); Elnagar and Kazemi
(1998a)]. Three types of collocations points in the time domain are mostly used:
Legendre-Gauss (LG) points, Legendre-Gauss-Radau (LGR) points and Legendre-
Gauss-Lobatto (LGL) points. In [Garg, Patterson, Hager, Rao, Benson, and Hunt-
ington (2010)], the effect of collocation points on the accuracy of solutions was test-
ed based on a first-order dynamical system. In [Rad, Kazem, and Parand (2012)],
radial basis functions (RBFs) were also used as trial functions in a pseudo-spectral
frame work. But the solution of the NLP turned out to be very sensitive to the
initial guess, and it generally requires one to analytically solve a low order system
and provide the solution as the initial guess for the NLP.
In this work, the two-point boundary value problem for an optimal controller is
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solved using direct collocation and RBFs without resorting to the pseudo-spectral
methods. Using radial basis functions as the trial functions, direct collocation at
the LGL nodes leads to a system of nonlinear algebraic equations (NAEs), which
are solved using the classical Newton’s method. Based on a large number of nu-
merical examples for various time-domain inverse problems, it is shown that the
proposed method is very simple, very accurate and insensitive to the initial guess
of the unknown states. The detailed formulations are given as follows.

2.1 The Legendre-Gauss-Lobatto (LGL) Nodes

The well known Legendre polynomials are orthogonal to the weight function w(t)=
1 on the interval t 2 [�1,1] and satisfy the recursion,

p0(t) = 1
p1(t) = x

pi+1 =

✓
2i+1
i+1

◆
t pi(t)�

✓
i

i+1

◆
pi�1(t), i = 1,2, . . .

(8)

The LGL nodes can then be obtained from solving the differential equation,
�
1� t2

j
�

ṗN(t j) = 0 (9)

which produces the node distribution �1 = t0 < t1 < .. . < tN = 1. The solution of
the LGL nodes is generally obtained by numerical algorithms such as in [Elnagar
and Kazemi (1998b)]. By a simple mapping in Eq. 10, t = [�1, . . . ,1] is trans-
formed into t = [t0, . . . , tF ] to obtain the LGL nodes for an arbitrary time interval:

t =
tF � t0

2
t + tF + t0

2
(10)

2.2 Radial Basis Functions and Collocation

Radial Basis Functions (RBFs) are real-valued functions with values depending
on the distance from a source point, f(xxx,xxxc) = f(kxxx�xxxck) = f(r). Some of the
commonly used types for RBFs are as follows, [Buhmann (2003)]:

f(r) = e�(cr)2
Guassian

f(r) = 1
1+(cr)2 Inverse quadratic

f(r) =
q

1+(cr)2 Multiquadric

f(r) = 1p
1+(cr)2

Inverse multiquadric

(11)
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where c > 0 is a shaping parameter.
In this study, the trial functions are expressed for the mixed variables xxx1(t) and
xxx2(t) are both expressed as a linear combination of Gaussian functions, with N
LGL nodes (t j, j = 1, . . . ,N) as the source points, as proposed initially in [Atluri,
Han, and Rajendran (2004); Atluri (2005); Dong, Alotaibi, Mohiuddine, and Atluri
(2014)]. And the collocation is also performed at the N LGL nodes, leading to:

xxx(ti) =
N

Â
j=0

f(ti, t j)aaa j, i = 1, . . . ,N (12)

In matrix-vector form Eq. 12 can be rewritten as,

XXX =FFFAAA (13)

where FFF represents the matrix of basis functions, AAA is the vector of undetermined
coefficients, and XXX is the vector of unknown states at each LGL node. The time-
differentiation of Eq. 13 can be then expressed as,

ẊXX = ḞFFAAA (14)

Hence, combining Eq. 13 and Eq. 14, ẊXX is related to XXX by,

ẊXX = DXXX , D ⌘ ḞFFFFF�1 (15)

where, D is called the derivative matrix, which is generated from the RBFs and
their time-derivatives evaluated at the LGL nodes.
Similarly, the co-state functions and its time-derivatives can also be expressed using
the same Gaussian functions, leading to:

L̇LL = DLLL, (16)

where LLL represents the unknown co-states at at each of the LGL nodes.
Using this formulation the state/co-state equations in Eq. 7 and the boundary con-
ditions in Tab. 1 are discretized and transformed into a set of NAEs that can be
handled by classical numerical iterative solvers such as Newton’s method or by
recently-developed Jacobian inverse free methods [Liu and Atluri (2012); Dai, Yue,
and Atluri (2014); Elgohary, Dong, Junkins, and Atluri (2014)]. In this study the
classical Newton’s method is utilized and other Jacobian inverse free NAEs solvers
are to be explored in future studies.
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3 The Duffing Optimal Control Problem

The duffing equation has been in the literature for almost a century [Cvetićanin
(2013)], with a wide range of applications in science and engineering from a nonlin-
ear spring-mass system in mechanics to fault signal detection [Hu and Wen (2003)],
and structures design [Suhardjo, Spencer Jr, and Sain (1992)]. The control of a
duffing oscillator has a seminal significance to the control problems of nonlinear
dynamic responses of structures such as beams, plates, and shells. The duffing
oscillator is governed by the following second-order nonlinear ODE:

ẍ+w2
n x+bx3 = f , 0  t  T (17)

which can be re-written as a system of 2 first-order ODE equations:

ẋ1 = x2

ẋ2 =�w2
n x1 �bx3

1 + f
(18)

where wn is the natural frequency and b describes the nonlinearity of the system.
With x1(0),x2(0) and f (t) being given the problem is well-posed, whereas the ill-
posed problem arises from the prescribed: (1) x1(T ),x2(T ); (2) x1(0),x1(T ); (3)
x1(0),x2(T ); (4) x2(0),x1(T ); (5) x2(0),x2(T ), with the unknown forcing function
f . In order to satisfy those boundary conditions the force function f is to be ob-
tained subject to a simple performance index :

f(xxx(tF), tF) =
1
2
[xxx�xxxF ]

T S [xxx�xxxF ]

L(xxx, fff , t) =
1
2

Z T

0
f 2dt

(19)

Hence,

J =
1
2
[xxx�xxxF ]

T S [xxx�xxxF ]+
1
2

Z T

0
f 2dt (20)

where, xxx = [x1,x2]T, S > 0 is assumed diagonal for simplicity, S ⌘ diag [s11,s22],
xxxF = [x1F ,x2F ]T is the desired final state at the specified final time T . The Hamilto-
nian can then be expressed as,

H =
1
2

f 2 +l1x2 +l2
�
�w2

n x1 �bx3
1 + f

�
(21)

where, l1 and l2 are the Lagrange multipliers or the system co-states. The nec-
essary conditions that relates the co-states to the controller and minimizes the cost
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function are derived from Eq. 7 as,

� l̇1 =
∂H
∂x1

) l̇1 = l2
�
w2

n +3bx2
1
�

� l̇2 =
∂H
∂x2

) l̇2 =�l1

∂H
∂ f

= 0 ) f =�l2

(22)

where different boundary conditions can also be derived following Tab. 1. In this
study, several ill-posed problems of the duffing oscillator are considered: the free
final state case, the fixed final state case, and the partially prescribed initial & final
stated. A simple extension to prescribed periodic solution case is also demonstrat-
ed. All these cases are discussed in detail in the following subsections, and are
solved by the proposed simple RBF collocation method.

3.1 Free Final State Optimal Control Problem

With prescribed initial conditions xxx(0) = [x10,x20]T, the objective is to find the op-
timal forcing function that minimizes the performance index in Eq. 20. From Eq. 6
the boundary conditions imposed on the system of ODEs in Eq. 22 are,

x1(0) = x10, x2(0) = x20

l1(T ) = s11(x1(T )� x1F), l2(T ) = s22(x2(T )� x2F)
(23)

where x1F ,x2F are the desired final states. Combining Eq. 23 with Eq. 22 and Eq. 18
yields the system of ordinary differential equations with split boundary conditions
for the free final state optimal control problem as,

ẋ1 = x2
ẋ2 =�w2

n x1 �bx3
1 �l2

�
x1(0),x2(0) specified

l̇1 = l2
�
w2

n +3bx2
1
�

l̇2 =�l1

� l1(T ) = s11(x1(T )� x1F)

l2(T ) = s22(x2(T )� x2F)

(24)

Applying RBFs collocation to the system of ODEs in Eq. 24 the total time is divided
into N LGL nodes and the system of 4N nonlinear algebraic equations is obtained
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as,

R1
1 = x1

1 � x10 = 0

Ri
1 = Dxi

1 � xi
2 = 0

R1
2 = x1

2 � x20 = 0

Ri
2 = Dxi

2 +w2
n xi

1 +b (xi
1)

3 +l i
2 = 0

R j
3 = Dl j

1 �l j
2 [w

2
n +3b (x j

1)
2] = 0

RN
3 = l N

1 � s11(xN
1 � x1F) = 0

R j
4 = Dl j

2 +l j
1 = 0

RN
4 = l N

2 � s22(xN
2 � x2F) = 0

(25)

where, i = 2, . . . ,N, j = 1, . . . ,N � 1. This formulation accommodates the collo-
cation of the boundary conditions without producing an over-determined system
of equations [Trefethen (2000)]. The set of 4N nonlinear algebraic equations in
Eq. 25 can then be solved by the classical Newton’s method to obtain the values of
the states and the co-states at the collocation nodes.

3.2 Fixed Final State Optimal Control Problem

For this case both the initial and final conditions are prescribed and the optimal
forcing function is to be solved for to minimize the general performance index in
Eq. 20. The split boundary condition are then given by,

xxx(0) = xxx0, xxx(T ) = xxxF (26)

Applying the necessary conditions in Eq. 7, the optimal control problem can then
be formulated as,

ẋ1 = x2
ẋ2 =�w2

n x1 �bx3
1 �l2

�
x1(0),x2(0),x1(T ),x2(T ) specified

l̇1 = l2
�
w2

n +3bx2
1
�

l̇2 =�l1

�
l1,l2 free

(27)
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As in Eq. 25, the system of 4N nonlinear algebraic equations is constructed as,

Ri
1 = Dxi

1 � xi
2 = 0

R1
2 = x1

1 � x10 = 0

R j
2 = Dx j

2 +w2
n x j

1 +b (x3
1)

j +l j
2 = 0

RN
2 = xN

1 � x1F = 0

R1
3 = x1

2 � x20 = 0

R j
3 = Dl j

1 �l j
2 (w

2
n +3b (x2

1)
j = 0

RN
3 = xN

2 � x2F = 0

Ri
4 = Dl i

2 +l i
1 = 0

(28)

where, i = 1 . . . ,N, j = 2, . . . ,N �1. In this way, there are 4N nonlinear algebraic
equations for 4N unknowns.

3.3 Partially Prescribed Initial & Final States

Three additional cases of partially prescribed boundary conditions are formulated
in this section. The first case prescribes the initial and final position, x1(0),x1(T ).
The second case prescribes the initial position and final velocity, x1(0),x2(T ). Fi-
nally, the third case prescribes the initial velocity and final position, x2(0),x1(T ).
For each of the three cases the split boundary conditions are derived from Eq. 6
to formulate the ill-posed system of first-order ODEs that is parameterized with
RBFs collocation and solved with classical Newton’s method. For the first case,
the ill-posed set of ODEs is given by,

ẋ1 = x2
ẋ2 =�w2

n x1 �bx3
1 �l2

�
x1(0),x1(T ) specified

l̇1 = l2
�
w2

n +3bx2
1
�

l̇2 =�l1

�
l2(0) = 0, l2(T ) = s22(x2(T )� x2F)

(29)

For the second case where initial position and final velocity are prescribed, the set
of first-order ODEs with split boundary conditions is given by,

ẋ1 = x2
ẋ2 =�w2

n x1 �bx3
1 �l2

�
x1(0),x2(T ) specified

l̇1 = l2
�
w2

n +3bx2
1
�

l̇2 =�l1

�
l2(0) = 0, l1(T ) = s11(x1(T )� x1F)

(30)
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Finally, for the case where initial velocity and final position are prescribed, the
following equations are obtained,

ẋ1 = x2
ẋ2 =�w2

n x1 �bx3
1 �l2

�
x2(0),x1(T ) specified

l̇1 = l2
�
w2

n +3bx2
1
�

l̇2 =�l1

�
l1(0) = 0, l2(T ) = s22(x2(T )� x2F)

(31)

For each of these three cases, a collocation scheme which is similar to Eq. 25 and
Eq. 28 is used. The only difference is that the boundary conditions at t0 and tF are
changed to those in Eq. 29, Eq. 30, and Eq. 31.

3.4 Prescribed Harmonic Steady State Achieved by an Optimal Controller

In this case, with a given initial position and velocity, the duffing oscillator is re-
quired to achieve a steady harmonic state after a time interval T :

x̂(t) = a1 cos(wt)+a2cos(3wt)+a3 cos(
1
3

wt) (32)

where, the frequency, w , and the amplitudes, a1,a2,a3, are specified, and the same
performance index of Eq. 19 is considered.
From Eq. 17, one can see that the controller is defined after T :

f = ¨̂x+w2
n x̂+b x̂3, t � T (33)

And the solution of the controller between 0  t  T is entirely equivalent to solve
the fixed final state optimal control problem given in section 3.2, with the following
fixed final states:

x1F = a1 cos(wT )+a2 cos(3wT )+a3 cos(
1
3

wT )

x2F =�


a1w sin(wT )+3a2w sin(3wT )+
1
3

a3w sin(
1
3

wT )
� (34)

Thus, the same solution procedure given in Eq. 28 is used at here, with RBF as trial
functions, and LGL nodes as collocation points.

3.5 Numerical Results

Numerical experiments are conducted for each case of the Duffing optimal control
problem in section 3.1-3.4. Tab. 2 shows the parameters used for the numerical
simulations. For each case, 40 LGL nodes within the time interval are used as the
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RBF source points and collocation points, i.e. N = 40. And c = N�1
4T is used for

all the examples. the states and the controller resulting from the solution of the
NAEs are plotted. And then the obtained initial conditions are fed into a standard
numerical integrator, MATLAB ODE45. The differences between the solution by
collocation and the integrator are plotted at each collocation point, i.e. Dx = xRBF�
xODE.

Table 2: Duffing Optimal Control Problem Parameters

Parameter Value
Natural frequency, wn 1 rad/s

Nonlinearity coefficient, b � 0.9
Initial conditions, xxx0

⇥
0 0

⇤T

Final conditions, xxxF
⇥
5 2

⇤T

Harmonic response amplitudes a1 = 1.5, a2 = 2, a3 = 3
Harmonic response frequency w = 3 rad/s

For the first case with the free final conditions and b = 0.9, Fig. 1 shows the states
and the controller time history. Fig. 2 shows the errors between the semi-analytic
solution obtained by RBFs collocation and the numerical integrator at each collo-
cation point. As shown from the plots, the errors are in the order of ⇡ 10�7 for both
the states and the co-states.
The results for the fixed final state case with b = 0.9 are shown in Fig. 3 for the
states and the controller time history. Fig. 4 shows the errors in the states and the
co-states. Similar to the free final state case the errors in the states and co-states are
very small. It is also worth noting that the shooting method implemented at b � 0.9
will diverge with the arbitrary initial guess used for the RBFs collocation solution.
Fig. 5 and Fig. 6 show the results for the first case of partially prescribed boundary
conditions with x1(0) = x10 and x1(T ) = x1F . In that case, b = 0.94. Results for
the second case of partial boundary conditions are shown in Fig. 7 and Fig. 8 with
x1(0) = x10 and x2(T ) = x2F . Similar to the previous case, the same value for the
nonlinearity coefficient is chosen. The third case of partial boundary conditions is
given by x2(0) = x20 and x1(T ) = x1F with b = 0.97. Numerical results for this
case are shown in Fig. 9 and Fig. 10
Finally, for the case of a prescribed harmonic steady state with b = 0.9, the results
are shown in Fig. 11, whereas the errors in the states and the co-states at each
collocation point are shown in Fig. 12(a) and Fig. 12(b), respectively, which is in
the order of 10�7
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Figure 1: States & Controller, Duffing Free Final State
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Figure 2: States & Co-states Errors, Duffing Free Final State
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Figure 3: States & Controller, Duffing Fixed Final State
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Figure 4: States & Co-states Errors, Duffing Fixed Final State
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Figure 5: States & Controller, Duffing Prescribed Initial & Final Position
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Figure 6: States & Co-states Errors, Duffing Prescribed Initial & Final Position
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Figure 7: States & Controller, Duffing Prescribed Initial Position & Final Velocity
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Figure 8: States & Co-states Errors, Prescribed Initial Position & Final Velocity
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Figure 9: States & Controller, Duffing Prescribed Initial Velocity & Final Position
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Figure 10: States & Co-states Errors, Prescribed Initial Velocity & Final Position
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Figure 11: States & Controller, Duffing Prescribed Harmonic State
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Figure 12: States & Co-states Errors, Duffing Prescribed Harmonic State
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Table 3: Errors in Boundary Conditions

Cases of different BCs Error at t0 Error at tF

Free final state
⇢

1⇥10�22

4.2⇥10�22

� ⇢
0

2.2⇥10�16

�

Fixed final state
⇢

9.9⇥10�18

0

� ⇢
1.9⇥10�17

0

�

Prescribed Initial & final
position

⇢
3.8⇥10�17

6.8⇥10�19

� ⇢
0

1.1⇥10�16

�

Prescribed initial position
& final Velocity

⇢
6⇥10�19

1.4⇥10�19

� ⇢
0
0

�

Prescribed Initial Velocity
& final Position

⇢
3.2⇥10�17

3⇥10�17

� ⇢
0

2.2⇥10�16

�

Harmonic steady state
⇢

4.3⇥10�19

1.4⇥10�18

� ⇢
0
0

�

Tab. 3 shows the errors between the prescribed boundary conditioned and the ones
obtained from solving the set of nonlinear algebraic equations. It is shown that
the discretization of the fixed time-interval optimal control problem using RBFs as
trial functions, and simple collocation at the LGL nodes, has demonstrated its high
accuracy for all cases of boundary conditions explored in this study.

4 Orbital Transfer Two-point Boundary Value Problem

Another classical problem in celestial mechanics is the two-point boundary value
problem of orbital transfer. This problem is known as Lambert’s problem after
Johann Heinrich Lambert (1728–1779) who was the first to state and to solve the
problem. The objective is to find the transfer orbit that connects two points in space
given a flight time. Fig. 13 illustrates the geometry of Lambert’s problem with t0,rrr0
the initial time and position, tF ,rrrF the desired final time and position, vvv0 the initial
velocity to be solved for that would generate the transfer orbit and vvvF the terminal
velocity at the desired position.
The dynamics of the unperturbed relative two-body problem is obtained from New-
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t0
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Figure 13: Illustration of the Orbital Transfer Problem

ton’s famous universal gravitational law as,

r̈rr =
�µ
r3 rrr (35)

where, rrr =
⇥

x y z
⇤T is the position vector in the inertial frame, µ is the Earth

gravitational parameter µ ⇡ 3.986⇥1014 m3s�2 and r =
p

x2 + y2 + z2.
Solving the unperturbed Lambert’s problem analytically was discussed in detail in
[Battin (1999)]. The solution developed still has a singularity for transfer angles of
±180�. In [Schaub and Junkins (2003)], a numerical iterative method is introduced
to handle both singularities and gravitational perturbations in Lambert’s problem.
The method is essentially a shooting algorithm where a sufficiently good initial
guess for the initial velocity is needed to improve convergence. Generally, the ini-
tial guess for the velocity vector is obtained such that the target position is reached
but not necessarily in the required transfer time. The present solution based on
RBFs collocation starts with an arbitrary initial guess, and can readily handle any
perturbations to provide a semi-analytic solution for the transfer orbit problem.
As a first order system of equations the unperturbed two-body problem is written
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as,

ẋ1 = x2

ẋ2 =
�µ
r3 x1

ẏ1 = y2

ẏ2 =
�µ
r3 y1

ż1 = z2

ż2 =
�µ
r3 z1

(36)

The RBFs collocation can then be applied to Eq. 36 to produce a set of 6N nonlinear
algebraic equations where N is the number of LGL collocation nodes:

Ri
1 = Dxi

1 � xi
2 = 0

Ri
2 = Dyi

1 � yi
2 = 0

Ri
3 = Dzi

1 � zi
2 = 0

R1
4 = x1

1 � x10 = 0

R j
4 = Dx j

2 +
µ
r j x j

1 = 0

RN
4 = xN

1 � x1F = 0

R1
5 = y1

1 � y10 = 0

R j
5 = Dy j

2 +
µ
r j y j

1 = 0

RN
5 = yN

1 � y1F = 0

R1
6 = z1

1 � z10 = 0

R j
6 = Dz j

2 +
µ
r j z j

1 = 0

RN
6 = zN

1 � z1F = 0

(37)

where, i = 1, . . . ,N and j = 2, . . . ,N �1 which produces a system of 6N equations
in 6N unknowns. As a numerical example an orbit is examined with initial and
final position given by,

rrr0 =
⇥

2.87 5.19 2.85
⇤T ⇥106 m

rrrF =
⇥

2.09 7.82 0
⇤T ⇥106 m

(38)

The transfer time is chosen to be tF = 0.05 days or tF = 4.32⇥ 103 seconds. The
number of LGL nodes is set as, N = 47, with the shaping parameter, c = N+3

4T .
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The set of nonlinear algebraic equations in Eq. 37 is solved with an arbitrary initial
guess. And the resulting orbit is compared against the closed form Lagrange/Gibbs
(F& G) solution, [Battin (1999); Schaub and Junkins (2003)], considering the ini-
tial position and velocity vector obtained from the RBFs collocation method. The
resulting position and velocity are compared in Fig. 14 and Fig. 15, respectively.
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Figure 14: Transfer Orbit Position Propagation

Table 4: Errors in Boundary Conditions

Initial Boundary Error Terminal Boundary Error8
<

:

0
0
0

9
=

; m

8
<

:

9.610�3

16.3⇥10�3

10.2⇥10�3

9
=

; m

The errors of the initial and the terminal boundary conditions are compared as in
Tab. 3 in Tab. 4. The initial conditions obtained by the RBF collocation method
drives the object to the desired final position with millimeter accuracy. This ap-
proach using RBFs collocation thus is quite advantageous compared to previous
analytical and numerical methods of solving the Lambert’s problem. And it can be
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Figure 15: Transfer Orbit Velocity Propagation

extended in future to to address perturbations and obtain what is known as pork-
chop plots for the selection of launch and arrival times while minimizing fuel or
some other specified parameters.

5 Conclusion

The present simple collocation scheme based on radial basis functions and LGL
collocation points is proven to be very accurate and efficient in solving time domain
inverse problems. Starting with the Duffing OCP, all the cases considered achieved
very high accuracy in the initial and final conditions. The solution is insensitive to
the initial guess and does not require any insight into the physics of the problem.
Several extensions are possible for the OCP to include intermediate boundary con-
ditions or inequality constraints along the trajectory. The orbital transfer problem
based on the same formulation achieved millimeter accuracy when compared to
the analytical Lagrange/Gibbs F&G solution. Unlike the shooting method which
requires the problem to be solved first for an arbitrary time and the solution to fed
in as the initial guess, the RBFs collocation approach started at an arbitrary set of
initial conditions and achieved very high accuracy in determining the transfer orbit.
The method can be utilized to provide pork-chop plots for launch and arrival times
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for mission design. For all the cases considered in this work, the generated set
of NAEs are solved with the classical Newton’s method whereas several Jacobian
inverse free methods exist and can be explored in future studies, [Liu and Atluri
(2012); Dai, Yue, and Atluri (2014); Elgohary, Dong, Junkins, and Atluri (2014)].
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