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Abstract We study the dynamics of a two- degree-of-
freedom (pitch and plunge) aeroelastic system where
the aerodynamic forces are modeled as a piecewise
linear function of the effective angle of attack. Sta-
bility and bifurcations of equilibria are analyzed. We
find border collision and rapid bifurcations. Bifurca-
tion diagrams of the system were calculated utilizing
MATCONT and Mathematica. Chaotic behavior with
intermittent switches about the two nontrivial equilib-
ria was also observed.
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1 Introduction

Nonlinear analysis of airfoils is a topic that is exten-
sively covered in the literature [7,11,12, 18]. In general,
nonlinearities of airfoils are structural and/or aerody-
namic. A comprehensive analysis for such nonlineari-
ties was presented in [18] together with the derivation
of the equations of motion of a 2D airfoil oscillating
in pitch and plunge. The authors investigated stabil-
ity, bifurcations and chaos of the system with cubic,
freeplay and hysteresis. Nonlinear aeroelasticity and
its effects on flight and its association with limit cycle
oscillations (LCO’s) was considered in [7]. Gilliat et al.
[11] studied both structural and aerodynamic nonlin-
earities arising from stall conditions.

An experimental investigation of structural nonlin-
earity with emphasis given to continuous nonlineari-
ties arising from spring hardening/softening effects was
presented in [25] and [26]. The aeroelastic response
of a 2D airfoil with bilinear and cubic structural non-
linearities was investigated in [29]. Numerical sim-
ulations applying the finite difference method were
compared against the analytical describing function
method. LCO’s were found to exist at a velocity below
the divergent flutter limit. Chaotic behavior was inves-
tigated with the application of preload, and bifurcation
diagrams showing period doubling were plotted as a
result. Similarly, freeplay, hysteresis and cubic struc-
tural nonlinearities were analyzed in [39]. The flutter
behavior of the airfoil was found to be highly depen-
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dent on initial conditions. LCO’s existence arising from
those nonlinearities was also investigated. Abdelkefi
et al. [1] perform an analytical and experimental inves-
tigation into the dynamics of an aeroelastic system con-
sisting of a plunging and pitching rigid airfoil supported
by a linear spring in the plunge degree of freedom
(DOF) and a nonlinear spring in the pitch DOF.

Aerodynamic nonlinearities were investigated sep-
arately in [37]. A typical airfoil section with tran-
sonic aerodynamic nonlinearities was analyzed using
the describing function method. Results compared to
numerical methods were found to be very close espe-
cially for small amplitudes of motion where the describ-
ing function method is very effective. Internal reso-
nances in a 2D airfoil model with aerodynamic nonlin-
earities arising from dynamic stall were examined in
[12]. The existence of internal resonances in specific
classes of aeroelastic systems was investigated which
lead to instabilities that were not predicted by tradi-
tional methods.

Combining both structural and aerodynamic nonlin-
earities was investigated in the aeroelastic response of
a nonrotating helicopter blade in [34] and [35]. The
airfoil model was a NACA 0012 with three cases of
nonlinearities, nonlinear structure linear aerodynam-
ics, linear structure nonlinear aerodynamics and non-
linear structure with nonlinear aerodynamics, analyzed
numerically. Structural nonlinearities were modeled
by freeplay stiffness, whereas experimental data and
curve fitting techniques were used to model the non-
linear aerodynamic lift coefficient. The flutter behav-
ior in all cases was investigated, and the amplitudes
of LCO’s were found to be dependent on freestream
velocity and initial conditions. Chaotic behavior was
also investigated for forced and unforced cases with
Poincaré maps for certain velocities. Experimental and
analytical results were found to be in good agreement.
Freeplay, cubic and hysteresis structural nonlinearities
were also investigated on 2-DOF and 3-DOF models.
The analysis confirmed that the flutter amplitudes were
largely dependent on initial conditions.

Representing a nonlinear continuous system as
piecewise linear is generally used to make the prob-
lem more tractable. This approach was used in [3] for
several problems involving forced and free oscillations.
Hysteretic systems are also analyzed using this method
[16], where a hysteretic relay oscillator was analyzed,
explicit solution of the problem was found and Poincaré
maps of the system were constructed. In [27] and [28],
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the same approach was used to describe the behavior
of an elasto-plastic beam model. The authors showed
the hysteretic behavior of the system after finding the
closed-form solution of the problem and constructing
a map for the determination of the plastic cycles of
the system. The problem was tackled with both free
and periodic impulse forcing oscillations. A piecewise
linear oscillation model was utilized in [32] to ana-
lyze a single-DOF nonlinear oscillator with nonlinear-
ity in the restoring force. The force was modeled as
a piecewise linear function with a single change of
slope. Poincaré maps of the system was also analyzed,
and harmonic, subharmonic and chaotic motions were
found with the bifurcations leading to them. Similarly,
in [22] and [23], two types of piecewise linear sys-
tems were introduced and analyzed: systems with setup
springs and systems with clearances. Subharmonic and
chaotic motions of those systems were also investigated
and analyzed. Bifurcations in nonsmooth continuous
systems are discussed in [5,19], and a recent survey
of the field can be found in [24]. The so-called multi-
ple crossing bifurcations where the eigenvalues jump
more than once over the imaginary axis were discussed
for those types of systems with several examples of
systems with that type of bifurcation. Magri and Gal-
vanetto [21] shows how the nonsmooth definition of the
dynamic stall model can generate a nonsmooth Hopf
bifurcation in an aeroelastic system. Antali and Stepan
[4] explore discontinuity-induced bifurcations for a ball
in dual-point contact with a cylindrical vessel. Llibre
et al. [20] deal with determining the maximum number
of limit cycles of some classes of planar discontinu-
ous piecewise linear differential systems defined in two
half-planes separated by a straight line.

In this work, a 2-DOF (pitch and plunge) aeroelas-
tic system is analyzed with a piecewise linear aerody-
namic model. First, the piecewise aerodynamic model
is described and the range of each portion of the model
is defined. The equations of motion are then derived and
expressed in terms of the piecewise linear model para-
meters and then nondimensionalized. From the piece-
wise linear model, a bilinear model is extracted for the
analysis. The stability and bifurcations of the bilinear
system are examined analytically and numerically. The
analysis found bifurcations that are intrinsic to piece-
wise systems such as border collision and the rapid
bifurcations. The border collision bifurcation describes
the sudden birth of equilibria, and the rapid bifurca-
tion explains the creation of a finite-amplitude stable
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Piecewise linear approximation
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Fig. 1 Experimental lift coefficient data and piecewise linear
approximation

limit cycle. Chaotic behavior was also found, and the
intermittent route to chaos was observed numerically.
We comment on the validity of the bilinear model and
examine the robustness of the solutions by introduc-
ing a family of function to provide a smooth transition
between the pre-stall and post-stall regimes.

2 The aeroelastic system

2.1 Aerodynamic forces

A comprehensive experimental study of lift coefficient
versus angle of attack was presented in [33]. Data were
collected for seven airfoil sections, all looking similar
to the NACA 0012 data shown in Fig. 1.

Motivated by the appearance of the data, the lift coef-
ficient C; is modeled as a piecewise linear function of
the effective angle of attack . (note that C; is an odd
function of «efr). The piecewise linear model consists of
three portions with boundaries defined by agan, @switch
and opound, as shown in Fig. 1. The parameter o
characterizes the stall condition at which lift starts to
decrease as aefr is increased. The parameter ogyitch cor-
responds to the switching point at which the slope of C;
starts to increase again. The parameter apoung defines
the range of validity of the model. The lift coefficient
Ci(aefr) is therefore defined as

Ci(oefr)
Coeff loteff| < Astall
= q C10ft + Sgn(tefr)c2  Ustall < |oteff| < Uswitch
C3eft + SEN(Aeff)C4  Uswitch < |Qeff| < Abound-

ey

Table 1 Piecewise linear aerodynamic model parameters

&) Cl c Cc3 c4
5.932 —6.846 2.56 2.662 —0.2515
Ustall Aswitch bound

0.2rad 0.2957 rad 0.4712rad

Fig. 2 2-DOF pitch and plunge model

The parameters (summarized in Table 1) are found by
manual partitioning of the data followed by least square
line fitting. A more rigorous way of fitting a continuous,
piecewise linear function to data is described in [38].

2.2 Dynamic model

The dynamic model is a typical 2-DOF, pitch and
plunge, aeroelastic system shown in Fig. 2. The vari-
able y describes the vertical (plunge) displacement, « is
the angular (pitch) displacement, ky is the linear spring
constant for the plunge DOF, k,, is the torsional spring
constant for the pitch DOF, M, L are the aerodynamic
moment and lift applied at the airfoil aerodynamic cen-
ter, and finally, b is the semichord of the airfoil. A sim-
plifying assumption we use is that the aeroelastic axis
and the center of mass are collocated at three quarters
of the chord length.
The system equations are given by

my + cyy + kyy = —L(Ci(aefr)). 2
Ieg@ + cqb + koot = M (Ci(cter)), 3)

where m is the mass of the wing, cy is the damping
coefficient for the plunge DOF, I is the moment of
inertia about the center of mass and ¢, is the damping
coefficient for the pitch DOF. The effective angle of
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Table 2 System parameters

Parameter ~ Description Value/units
b Semichord of wing 0.1064 m

N Wing span 0.6m

m System mass 12kg

ky Spring constant plunge DOF 2844.4 N/m
ko Spring constant pitch DOF 2.82 N m/rad
Ccy Viscous damping plunge DOF 27.43kg/s
Ca Viscous damping pitch DOF 0.036 kg m?/s
Ieg Mass moment of inertia 0.0433kg m?
0 Air density 1.2kg/m?

L Aerodynamic lift N

M Aerodynamic moment Nm

y Plunge DOF m

o Pitch DOF rad

U Freestream velocity m/s

attack ofr takes into account the instantaneous motion
of the system and is defined as

y
Qeff = & + U 4)

where U is the freestream velocity. The aerodynamic
lift and moment as functions of the lift coefficient are
given by

L(Ci(aerr)) = pUbSC(ater), (5)
M (Ci(aer)) = pUb*SCi(ef)- (©6)

Here p is the air density and S is the wing span. Table 2
summarizes the system parameters together with their
values used in our computations (from [33]).

2.3 Nondimensional model

Equations (2)—(6) are nondimensionalized by a length
scale L, atime scale 7', and anondimensional freestream
velocity u > 0, given by

2 _ ICg

=% 72
ob%S

s (7

These scales yield the nondimensional plunge, y = %,
the nondimensional time T = % The derivative with
respect to the nondimensional time is denoted by ()’ =
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%. The nondimensional angle of attack can now be
expressed as

1.
oot = + — 3. (8)
n

By substituting the piecewise linear function C; into
the Egs. (2) and (3), we get

5 4+ p15 + 5 = —pan’Cileer),
o + p3o + paa = 1> Cp(oetr), 9

with which we obtain the equations for —ogia < et <

Ustall

7" 4 (p1 + papco)y + 5 + paulcoa =0,
o’ + p3e + (ps — nco)a — oy’ =0, (10)

for orgran < lvetf] < otswitch
7'+ (p1 + pauc)V + 5 + paplera

= —pau’er sgn(eer)a” + pao

+ (pa — pPen)a — ety = pler sgn(aes), (11)

and for ogwiteh < |@etf| < otbound

F' 4+ (p1 + pares)§ + § + paptesa
= —pop’ca sgn(eerr),
o+ p3dd + (pa — pPe3)a — pue3 i eq sgn(@efr)-

The nondimensional parameters pp, pa, p4 and p4 are
given by

Cy VPolegS

p1 = ., =, (12)
JVmk, m
cq [m kom

p3 = T p4 = .
Ieg\ Ky Tegky

3 The bilinear model

Since a bilinear model is more tractable for the purpose
of understanding the full system behavior, so here we
restrict our attention to such a model. Further, using
the bilinear model lets the aerodynamic model exceed
the physical bounds of the original aeroelastic sys-
tem resulting in a more general solution that can be
applied to several classes of problems, see [9] and [17].
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Figure 16 shows the full bilinear model and the odd
nature of the lift coefficient function.
By introducing the new variables

X1:=y, x:=3, x3:=a x4:=0d (13)
and the state vector X := (x1, x2, x3, x4) |, Egs. (10)-

(11) can be concisely written as the piecewise linear
system

x=Ax—B, xe UX", (14)
Xx=Apx, xe X uUR'UuxT, (15)
x=Ax+B, xexXxtunt. (16)
Here
0 1 0 0
A — |1 —ckmp2 = po —ulckp2 0
1o 0 0 1|
0 ki kM — pa —p3
0
2
—capajh
B=
0
cou?

and all symbols but c; are positive, see (12) and Tables 1
and 2. The system has one parameter & > 0. The
domains of the subsystems (14)—(16) are given by

f — {x cR*: (3 +x2/0) > Olstau} ,
V.= {xeR“: |x3 + x2/ ] <Olsta11}- a7

These domains are separated by the switching planes
defined by

»E .= {x eR*: X3+ x2/p0 = iOlstall} . (18)

With these, the state space R* can be decomposed as
Rt= ux-uuztuet

This decomposition is demonstrated in Fig. 4.

3.1 Equilibria: existence, stability and bifurcations

In the following, we will show that the origin is always
an equilibrium of the system, and depending on the

parameter value, there could be two other equilibria
(ET). To ascertain the stability of these equilibria, we
study the characteristic polynomial of Ay
Re = 2%+ ai(k, Wi’ + ax k, )2?

+az(k, wh +ask, p), (19)
ay(k, u) = p3 + p1 + packpe, (20)
ax(k, 0) = 1+ pa+ p1ps + papscep — e, (21)
as(k, 1) = p3 + p1pa + papacki — prcxn®,  (22)
as(k, (1) = pa — (e (23)

Applying the Liénard—Chipart stability criterion [10],
the matrix Ay is asymptotically stable if and only if

ay(k, n) > 0, (24)
ag(k, u) > 0, (25)
Ak, ) = ay(k, u) > 0, (26)

Aslk, p) = wcipip2
+uter (P1P3 —p3(pip3+pa—1) ck)
+ulpac? (p3 (p4 (p%ck - 1) + 1) —2p3pi—
X (P% + pa— 1) p1)
+1? pack (Pl (174 (3p§ck - 2) + 2)
+p3p3 (pa+ D ek — pi(pr + pg))

+up2p3ck (31741712 +2p3(ps+1) p1
+p5+ (pa— 1)2)
+p1p3 (p% + (pa— 1>+ pips

+p1p3(ps + 1)) > 0, 27)

where A; and Aj are the so-called Hurwitz determi-
nants.

3.1.1 Stability of the origin

Subsystem (15) always admits the origin as equilib-
rium. Notice that the left-hand sides of (24)—(27) are
all positive at . = 0; therefore, by continuity the origin
is stable for small enough © > 0.

Figure 3 shows the behavior of the eigenvalues of
Ay [subsystem (15)].

One complex conjugate pair (denoted by A 4) moves
very little and remains in the left half plane. As the
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Imaginary Part

AB

k Patie

Real Part

-1t <o Ay

-0.08 -0.03 0 0.03

Fig. 3 Eigenvalues of A as a function of p

imaginary parts of the complex conjugate pair A 5 move
toward zero, they collide and become real (this is a
case of colliding eigenvalues [31]), still in the left half
complex plane. This eigenvalue collision happens at

LEC & 0.2149.

Then this pair splits in dispair along the real axis. To
see where the origin loses stability (when one real root
moves to the right half plane), we need to find the
smallest positive p for which any of the inequalities
(24)—(27) is violated. In other words, we are looking
for the smallest positive root of any of a»(0, u) =
0,a40, ) = 0,A1 0, ) = 0,A30,) = 0.
Notice that Ay (0, u) and Az (0, u) are always posi-
tive, since A1(0, ) = p3 + p1 + p2copn > 0 and

A3(0, i) = 0.0044 + 0.0029.4 + 0.0676.4>
+0.07464° +0.31451* + 0.4561° > 0.

Therefore, A1(0, u) = 0 and A3(0, ) = 0 have no
positive roots. Now, observe that
a4(0, u) < ax(0, u) = a4(0, w)

+copap3n + pip3+ 1,

and both a» (0, u) and a4 (0, ) are quadratic in u with
negative leading coefficients. Hence, a4 (0, 1) = 0 has
the smallest positive root given by

usy = |22~ 02152, (28)
€0

The subscript SN is used because at this parameter
value the origin undergoes a saddle-node bifurcation
in the two-dimensional subspace corresponding to the
eigenvalue pair Ap (see Fig. 3).
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Fig. 4 The equilibria E* as a function

3.1.2 Existence and stability of E*

Subsystems (14), (16) have as equilibria

5 —P2D4
_ Cop 0
Ei=:|:A1]B::F2— , (29)
CLU* — p4 1
0

when these are in the domain of subsystems (14), (16),
respectively, i.e.,

> upe = | —2A%Ell 02148, (30)
€2 + C10stall

This condition can be easily derived from the inclusion
ET e T Uzt (31)

since the norms of the equilibria ||Ei || are monoton-
ically increasing functions of g (in other words E*
are points moving away from the origin on a line as
u is increased). At © = upc, the system undergoes a
discontinuity-induced bifurcation, called border colli-
sion bifurcation [5,41]. The positions of the equilibria
and the bifurcation are depicted in Fig. 4 together with
the subsystem domains and the switching lines. Note
that the switching lines are also dependent on u, Fig. 4
only shows them for the bifurcation value u© = ugpc.
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Fig. 5 Eigenvalues of A; as a function of p

The equilibria E* lose stability when the pair of con-
jugate roots A 4 of the characteristic polynomial R; = 0
crosses the imaginary axis (see Fig. 5). To find the para-
meter value urp (the subscript refers to the rapid bifur-
cation created at this value; see next Section) where this
occurs, again we need to find the smallest positive w
for which any of the inequalities (24)—(27) is violated.
Except in this case, the polynomials contain ¢; < 0
instead of ¢cp > 0 (i.e., k = 1). One can easily see that
0 < a4(1, p),and the discriminant of a (1, w) turns out
to be negative; therefore, a> (1, 1) and a4 (1, 1) have no
positive real roots for £ > 0. Now, examining the other
two polynomials A (1, u) and A3(1, i), we have the
following results. The only root of Aj(1, u) = 0 is
u ~ 2.01, and the only positive root of Az(1, u) =0
is u ~ 0.3034, which is the smaller one; hence, at
uURrB ~ 0.3034 the equilibria E* lose stability.

3.1.3 Bifurcation diagram

For 0 < p < upc, the origin is the only equilibrium
(stable). Then at ;4 = upc two equilibria E* appear in
symmetric positions on the switching planes via a bor-
der collision bifurcation (see Fig. 4). The newly born
equlibria are stable. By further increasing the parameter
value upc < W, the origin loses stability at © = usn
by a saddle—node bifurcation in a two-dimensional sub-
space. For larger parameter values usn < i, the equi-
libria E* lose their stability at & = ugrp through a
complex eigenvalue pair crossing the imaginary axis in
doing so creating a stable limit cycle in what is called a
rapid bifurcation [9, 17]. To summarize, the bifurcation
parameters are related as:

0 < uBC < MSN < URB. (32)

0.35 1

0.3 1

0.25 Mre 1

0.2 1

L Mec

0.15 1
0.1+ 1

0.05 | 4
M

0 : : : o, ‘ o
0 005 01 015 02 025 03 035

V]

Fig. 6 Pitch-DOF bifurcation diagram

x10°

pSN

X

=27 Masc

0 0.05 0.1

015 0.2
v

025 03

035 04

Fig. 7 Plunge-DOF bifurcation diagram

The bifurcation diagrams for the pitch and plunge DOF
are generated numerically utilizing MATCONT [6], as
shown in Figs. 6 and 7.

Roberts et al. [30] also use a numerical continua-
tion method to dynamic piecewise aeroelastic systems.
Thota and Dankowicz developed a toolbox (TC-HAT)
for continuation of periodic orbits in hybrid dynamical
systems [36].

4 Numerical results

Numerical simulations for the bilinear system dynam-
ics are presented here (a more complete set of results is
presented in [8]). The phase portraits of the pitch DOF
in the (x3, x4) plane are presented for 1, wo, 13 and
L4, where

@ Springer
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‘ 0.6

s+t

Fig. 8 Bifurcation diagram (BC border collision bifurcation, SN
saddle—node bifurcation, RB rapid bifurcation)

-0.3 0 0.3

T T

!

0.08

1-0.08

X3

Fig. 9 Projection of typical trajectories for © = py, the origin
is a stable equilibrium

0 < pr <UBC < M2 < USN < U3 < URB < 4.
(33)

In particular

n1 = 0.99upc = 0.2138,

n2 = 1.001pupc = 0.999usn = 0.215,
n3 = 1.2usny = 0.85urp = 0.2583,
g = 1.04urg = 0.316.

The bifurcation diagram (generated with Mathemat-
ica) in Fig. 8 is the intersection of the attractor and the
hyperplane:

{xeR4:x4=0/\x3>0}

projected onto x3 for the parameter range 0 < p < 0.7.

The first three bifurcations that the system under-
goes are shown in Fig. 8. Figures 9 and 10 show typi-
cal trajectories of the system before (1 = 1) and after

@ Springer
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Fig. 10 Projection of trajectories near the equilibria E* after
the border collision bifurcation for u = u,

-0.2 0 0.2

T T T

10.05

1-0.05

3

Fig. 11 Projection of two converging trajectories after the
saddle-node bifurcation for u© = u3

the border collision bifurcation (1 = w»), respectively.
Before the bifurcation, the only equlibrium is 0. Fig-
ure 11 shows that after the border collision bifurcation
there are three equilibria, 0 and E*. The equilibria E*
are stable for ugc < @ < URB-

Figures 9 and 11 illustrate the saddle-node bifurca-
tion: before the bifurcation (u = w»), trajectories con-
verge toward 0, while after the bifurcation (u = u3)
the trajectories diverge from 0 and converge to one of
the equilibria E*. Figures 11 and 12 show trajectories
before (© = pu3) and after (u = p4) the rapid bifur-
cation. Before this bifurcation, the equilibria E* are
stable, and after the bifurcation they become unstable
and limit cycles are born (Fig. 13).

Chaotic behavior is also observed in the bilinear
model dynamics (see Fig. 14). The time history in
Fig. 15 displays intermittent behavior [14]. This behav-
ior has been observed in many experiments in [15],
[40] and [13]. Alighanbari and Hashemi [2] also per-
formed bifurcation analysis of an airfoil with a struc-
tural nonlinearity in the pitch direction. They observed
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0 0.1 0.2 0.3

T T T

X
[ ]
=

B3
Fig. 12 Projection of a limit cycle and two converging trajecto-

ries after the rapid bifurcation for u = 4

0 0.2 0.4

X3

Fig. 13 After the rapid bifurcation, the amplitude of the limit
cycle oscillation is increasing with x, and then it undergoes a
period doubling (the outermost limit cycle)

1 0.02

X2

1 -0.02

X3

Fig. 14 Intermittent chaotic behavior for © = 0.55

the period doubling route to chaos in addition to a
mildly chaotic behavior in a narrow range of the bifur-
cation parameter. Period doubling is observed in our
case as well (see Fig. 13).

105

t

Fig. 15 Intermittent chaotic behavior for u = 0.55

-0.4 0 0.4

G

Qistall N|°

Qeff [rad]

Fig. 16 Bilinear model and its approximation by a family of
continuously differentiable functions

5 Model validity and robustness

The bilinear model and the original piecewise lin-
ear system are equivalent when |oeff| < otswitch- The
saddle-node and border collision bifurcations also
occur in the original system. When the rapid bifurcation
occurs, the newly born limit cycle lies outside of the
equivalency domain (above the dashed line in Fig. 8).

To examine the robustness of the model, we modify
the bilinear function to provide a smoother transition
between the pre-stall and post-stall regimes. We look
at the function x +— |x| as the limit of the hyperboles
X > +/x2 4 €2 when € — 0.

Using this idea, we constructed a family of maps
(Fig. 16) parametrized by € > 0:

C 5 <
Crlaer, €) =1 ! 1(ctefrs €) - [etefr] < @sia 34)

Cro(oteff, €)  gall < |aestl,

@ Springer
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0 0.35 0.7

u

Fig. 17 Bifurcation diagram for the smooth system with para-
meter value ¢ = 0.1

where
Cr1 (dett, €)

2
= —c0 sgn(eff) (\/ (letett] — otstan) ™ + €2

-2+ 62), (35)

Cro(ctefr, €)

2
= sgn(0ef) (01\/(|Oleff| — gait)” 4 0% (€)

+ Coastall) s (36)

where

o
ne) = c_l(astall +e— \/m)

Note that Cj(aefr, €) is in the class of continuously dif-

ferentiable functions, thus providing a smoother tran-

sition betwen the two regimes, while in the limit the

original bilinear function is recovered: Cj(aefr) =

lime_, 04 Cj(aefr, €). Every member of this family has

the same asymptotics as the bilinear function, that is
lim |C(oeft, €) — Cr(aes)| = 0,

|eteff|—00

furthermore C;(0, €) = C;(0) = 0. Substituting this
into Eq. (9), we obtain a smooth system instead of
a piecewise linear one. A bifurcation diagram for the
smooth system (¢ = 0.1) is shown in Fig. 17.

It can be seen that the border collision bifurcation
is disappeared, because there is no actual border but
a smooth transition between the regimes. The rapid
bifurcation is also gone; instead, there is a Hopf bifur-
cation occurring. A chaotic region is also present in the
smooth system. Nonetheless, the bifurcation diagrams
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of the bilinear system retain the same features. Thus,
we deem the bilinear system a good approximation of
the smooth system.

6 Discussion and conclusion

Nonlinear analysis of aeroelastic systems is a topic that
has been widely covered in the literature. The non-
linearities in aeroelastic systems can be aerodynamic
and/or structural nonlinearities. Many models were
introduced to address these nonlinearities and study
their effects on aeroelastic systems. In this paper, aero-
dynamic nonlinearities arising from the stall behavior
of an aeroelastic system were studied on a 2-DOF (pitch
and plunge) model. A piecewise linear model utiliz-
ing experimental data for the lift coefficient versus the
angle of attack for a NACA 0012 airfoil was proposed.

The equations of motion for the system were nondi-
mensionalized. The nondimensional freestream veloc-
ity was introduced as the system bifurcation parameter.

A simplified bilinear model was then extracted from
the full piecewise linear model and analyzed. Equilib-
rium points of the bilinear model were found analyti-
cally as a function of the bifurcation parameter. Stabil-
ity criteria of those equilibrium points were then estab-
lished by applying the Liénard—Chipart theorem. Bifur-
cation diagrams of the system were calculated utilizing
MATCONT and Mathematica.

The analysis found bifurcations that are intrinsic
to piecewise systems such as border collision and
the rapid bifurcations. The border collision bifurca-
tion describes the sudden birth of equilibria E=, and
the rapid bifurcation explains the creation of a finite-
amplitude stable limit cycle. Chaotic behavior was also
found, and the intermittent route to chaos was observed
numerically.

To better understand the underlying dynamical
behavior, one needs to pinpoint the mechanism leading
to the sensitivity on initial conditions. It is now widely
accepted that grazing (just-touching behavior of tra-
jectories) is directly responsible for complex behavior
(see, for example, Bernardo et al. [5]). The decom-
position of the state space into domains separated by
switching planes paves the way to the description of the
system behavior by symbolic dynamics. In particular,
the system behavior can be characterized by the evolu-
tion of sets of initial conditions lying on the switching
planes ¥*. A symbolic dynamics based analysis will
be the subject of a follow-up paper.
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Finally, it is important to highlight that some of the

results presented in this work exceed the boundaries of
the physical validity of the model for an airfoil. The
analysis was conducted on the bilinear model assum-
ing no restrictions on the range of the angle of attack.
The chaotic behavior observed can be attributed to the
model being beyond the valid range.
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