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MONTE CARLO PROPAGATION OF ORBITAL ELEMENTS USING
MODIFIED CHEBYSHEV PICARD ITERATION

Julie L. Read⇤, Tarek A. Elgohary†, Austin B. Probe‡, and John L. Junkins§

Prior works have shown promising efficiency while propagating perturbed two-
body motion using orbital elements combined with a novel integration technique.
While previous studies show that Modified Chebyshev Picard Iteration (MCPI)
is a powerful tool used to propagate position and velocity, instead using orbital
elements to propagate the state vector reduces the number of MCPI iterations re-
quired, which is especially useful for reducing the computation time when includ-
ing computationally-intensive calculations such as Spherical Harmonic gravity,
and it also converges for a larger number of revolutions using a single segment
(up to 17 orbits compared with 3 orbits for the cartesian, fully spherical harmonic
low-Earth orbit case). Results for the Classical Orbital Elements and the Modified
Equinoctial Orbital Elements (the latter provides singularity-free solutions) show
that state propagation using these variables is inherently well-suited to the prop-
agation method chosen. The present study incorporates a Monte Carlo analysis
using a local Taylor Series model that reduces the computational time and pro-
vides a high-accuracy solution for propagating the Modified Equinoctial Orbital
Elements both in serial and in parallel on a compute cluster.
MCPI is an iterative numerical method used to solve linear and nonlinear, ordinary
differential equations (ODEs). It is a fusion of orthogonal Chebyshev function ap-
proximation with Picard iteration that approximates a long-arc trajectory at every
iteration. Previous studies have shown that it outperforms the state of the practice
numerical integrators of ODEs in a serial computing environment; since MCPI
is inherently massively parallelizable, this capability increases the computational
efficiency of the method presented.

MODIFIED CHEBYSHEV PICARD ITERATION

MCPI1 is an iterative, path approximation method for solving smoothly nonlinear systems of
ordinary differential equations. Clenshaw and Norton2 first proposed combining the orthogonal
Chebyshev polynomials with Picard iteration. Later authors including Shaver, Feagin and Nacozy,
and Fukushima further refined the Chebyshev-Picard framework and also pointed out the parallel
computing implications of the method.3–5 More recent developments in parallelizing MCPI give
expected increase in efficiency.6–8

MCPI is a fusion of Picard iteration, which generates a sequence of path approximations, and
Chebyshev Polynomials, which are orthogonal and also enable both efficient and accurate function
approximation. This method is used to solve both linear and nonlinear, high precision, long-term
orbit propagation problems through iteratively finding an orthogonal function approximation for the
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entire state trajectory. At each iteration, MCPI finds an entire path integral solution (over a large
finite interval, converges over intervals up to three orbits using Cartesian coordinates), as opposed
to the conventional, incremental step-by-step solution strategy of more familiar numerical integra-
tion strategies, such as those based on explicit numerical methods. Significantly, however, unlike
conventional integration approaches, it is ideally suited for massive parallel implementations that
provide further boosts in the computational performance. Algorithm tests for the present study are
currently under development, including massive parallel implementations, where the performance
results will be presented in future papers.

In recent years, the research group (Junkins, et. al.) at Texas A&M University has significantly
expanded the literature on MCPI. An overview of the the method is given here, while further details
may be found in the references.1, 6, 9, 10 Emile Picard stated that, given an initial condition x(t0) =
x0, any first order differential equation

dx(t)
dt

= f(t, x(t)), t 2 [a, b] (1)

with an integrable right hand side may be rearranged, without approximation9 into an integral:

x(t) = x(t0) +
Z t

t0

f(⌧, x(⌧))d⌧ (2)

For a given suitable starting approximation x0(t), a unique solution to the initial value problem
may be found using an iterative sequence of path approximations through Picard iteration as

xi(t) = x(t0) +
Z t

t0

f(⌧, xi�1(⌧))d⌧, i = 1, 2, ... (3)

Here, the integrand of the Picard iteration sequence is approximated using Chebyshev polyno-
mials. Because the Cheybshev polynomials are orthogonal, a matrix inverse is not necessary to
find the basis function coefficients. Also, the Runge Effect (often seen at trajectory boundaries) is
greatly reduced due to a cosine sampling scheme. More details on the basics of the MCPI method
may be found in the references.1, 9 Additionally, initial efforts to implement MCPI using parallel
computation have shown additional speedup.7, 8, 11

Shaver3 integrated orbital motion using cartesian coordinates (Earth-Centered-Inertial, or ECI) as
well as equinoctial orbital elements. He noted that the smooth nature of the element rates makes this
set of elements easy to approximate with low-order Chebyshev polynomial series, and that using
the Variation of Parameters formulation leads to convergence in significantly fewer iterations. A
drag model and low order gravity model were included in these results. Another previous study by
Hyun Jo and Choi12 using the J2 gravity term concluded that using Modified Equinoctial Elements
gives a more accurate solution than Classical Orbital Elements. The present study expands Shaver’s
results on modern processors and incorporates a high order gravity model to gain insight into the
convergence domain and accuracy of using orbital elements.

MODIFIED EQUINOCTIAL ORBITAL ELEMENTS

A set of orbital elements is considered; previous work13 has shown that these Modified Equinoc-
tial Orbital Elements (MEEs) are inherently well-suited to using the MCPI method and converges
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over a larger number of orbits than is possible for the Cartesian case. Propagating these MEEs for
the Initial Value Problem has shown that the number of MCPI iterations is decreased, leading to a
smaller number of full gravity function calls. In addition, we anticipate the state/co-state differen-
tial equation systems (corresponding to optimal transfer formulations based on the MEE variation
of parameter differential equations) to converge over much longer time intervals.14

A similar orbital element set was used more than a century ago by Lagrange to study secular
effects due to planetary perturbations and is well suited for orbits with small eccentricities and
inclinations. Broucke and Cefola15 showed the original Equinoctial Elements set to be free of
singularities for zero eccentricities and both zero and ninety degree inclinations and also developed
a large number of properties and equations for the set. Applications of the Equinoctial Orbital
Elements include differential correction in orbit determination and integration of orbits that include
special and general perturbations. Broucke and Cefola15 also developed an explicit form of the state
transition matrix (or matrizant), which may be applied in guidance theory and general-perturbations
planetary theory with rectangular coordinates.

Brouwer and Clemence16 discussed the differential correction orbits with several orbital element
sets. The Equinoctial Orbital Elements as defined by Broucke and Cefola are similar to the Set III
elements (which are represented by nonintegrable differential relations) discussed by Brouwer and
Clemence, and they utilize the h and k elements.

The MEEs are a variation of the original Equinoctial Orbital Elements and are defined in terms
of the Classical Orbital Elements as17, 18

p = a(1� e2) (4)

f = ecos(! + ⌦) (5)

g = esin(! + ⌦) (6)

h = tan

✓
i

2

◆
cos(⌦) (7)

k = tan

✓
i

2

◆
sin(⌦) (8)

L = ⌦+ ! + ⌫ (9)

where L is the true longitude. The physical meaning behind these variables is given by Daniel-
son.19 The inverse relationship is

⌦ = tan�1
⇣k
h

⌘
(10)

!̄ = ! + ⌦ = tan�1
⇣ g
f

⌘
(11)

! = !̄ � ⌦ (12)

e =
p
f2 + g2 (13)

a = p/(1� e2) (14)
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⌫ = L� !̄ (15)

The singularity-free equinoctial formulation utilizes the longitudes �, F, L instsead of the classi-
cal anomalies Mean Anomaly, Eccentric Anomaly, and True Anomaly, M,E, ⌫ respectively:19

� = M + ! + ⌦ (16)

F = E + ! + ⌦ (17)

L = ⌫ + ! + ⌦ (18)

The MEE set utilizes p, the semilatus rectum instead of a, the semimajor axis and also L, the true
longitude instead of �, the mean longitude in contrast with the original Equinoctial elements set.
It is advantageous to write Kepler’s equation in terms of the eccentric longitude F , rather than the
eccentric anomaly E, to compute the position vector. This equation and the corresponding radius
vector may then be written as

� = F + gcos(F )� fsin(F ) (19)

r = a[1� gsin(F )� fcos(F )] (20)

These quantities remain well-defined for the cases of circular or equatorial orbits, eliminating
such singular cases known to exist for the Classical Orbital elements. The radius may alternatively
be written as

r = p/(1 + fcos(L) + gsin(L)) (21)

The transformation to and from Classical Orbital Elements and Modified Equinoctial Elements
is easily derived and is given by Jung.20 Since the integration of perturbed orbits requires the trans-
formation between orbital elements and Cartesian coordinates in order to compute the perturbing
acceleration, the transformation between the equinoctial frame and the Cartesian frame (and vice
versa) is given in detail by Celofa and Broucke.21 Analogously to the Classical Orbital Elements
case, a direction cosine matrix may be used to relate the variables in the equinoctial frame to the
Cartesian frame.15

[NE] =
1

1 + h2 + k2

2

4
1� h2 + k2 2hk 2h

2hk 1 + h2 � k2 �2k
�2h 2k 1� h2 � k2

3

5 (22)

For this study, the Gauss’ equations for the variation of the Modified Equinoctial Orbital Elements
are the preferred expressions.22 The chosen equations are17, 18

dp

dt
=

2pC

w

r
p

µ
(23)

df

dt
=

r
p

µ

(
Ssin(L) +

⇥
(w + 1)cos(L) + f

⇤
C

w
�

g
�
hsin(L)� kcos(L)

�
N

w

)
(24)

4



dg

dt
=

r
p

µ

(
�Scos(L) +

⇥
(w + 1)sin(L) + g

⇤
C

w
+

f
�
hsin(L)� kcos(L)

�
N

w

)
(25)

dh

dt
=

r
p

µ

s2N

2w
cos(L) (26)

dk

dt
=

r
p

µ

s2N

2w
sin(L) (27)

dL

dt
=

p
µp

✓
w

p

◆2

+

r
p

µ

�
hsin(L)� kcos(L)

�
N

w
(28)

where s2 = 1 + h2 + k2, w = p
r = 1 + fcos(L) + gsin(L) and C, S,N are the components

of the perturbing acceleration in the directions perpendicular to the radius vector in the direction
of motion, along the radius vector outward, and normal to the orbital plane in the direction of the
angular momentum vector, respectively.

Gauss’ Variational Equations may be used to compute the orbital elements as a function of time
for a disturbance acceleration ad that is both conservative and nonconservative. The orbital element
variations may be integrated by mapping the acceleration vector into the LVLH frame. Additionally,
if the disturbance ad is due to a control thrust, these equations show the resulting effect on the orbit.

Using the MEEs gives an increase in the domain of convergence, as is seen in Figure (1) as a
function of degree and order spherical harmonic gravity.13 If a single orbit is considered, where
one segment for the entire orbit is used, a reduction in both the number of MCPI iterations and
correspondingly, the number of gravity function calls is seen. These results are shown in Figures (2)
- (4). An initial timing comparison in Matlab, Figure (3), shows that for the single orbit case, using
a higher degree and order gravity leads to decreased computation time. These results are obtained
using a spherical harmonic gravity Mex file, which is C code compiled to execute as a function
in Matlab. The number of gravity function calls (the most computationally expensive portion of
the algorithm) are compared over one orbit in Figure (4); the number of calls is correspondingly
reduced as a result of reducing the number of MCPI iterations. Further studies using C code with
parallel computing on a compute cluster also show decreased computation time for a high degree
and order gravity Monte Carlo simulation.

TAYLOR SERIES GRAVITY EXPANSION

A local Taylor Series method is implemented for Monte Carlo simulation. A full spherical har-
monic gravity field (40,40) is used for the first MCPI iterations, to converge to the nominal trajectory.
Once MCPI converges on this solution, it is stored in memory at every MCPI node for computation
of the local Taylor Series approximation near each node. The local Taylor series approximation
is justified because all of the terminal iterations are in the close neighborhood of the final con-
verged solution, and we can establish on the basis of prior simulations the maximum distance one
must move away from the expansion point to invalidate the local Taylor series approximation to
a given accuracy. Thus, the efficiently computable Taylor series gravity approximation compares
with known precision to the high-fidelity (spherical harmonic) full gravity solution. The low-fidelity
(zonal) gravity is updated using the Taylor series in the following manner, where gF is the full grav-
ity, gz is the zonal gravity, r1 is the position under consideration for the approximating trajectory,
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Figure 1. Convergence Improvement (LEO) MEE vs. Cartesian Solutions
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r0 is the position (a typical Taylor expansion point) used to compute the nominal trajectory, and r
is the gradient function:

[gF(r1)� gz(r1)] ⇠= [gF(r0)� gz(r0)] +r[gF(r0)� gz(r0)][r1 � r0] +H.O.T. (29)

Rearranging this equation and neglecting the higher-order terms provides an approximation of
the full gravity that allows for more efficient computation of many Monte Carlo simulations:

gF(r1) = gz(r1) + c0 + [A0][�r] (30)

where a constant term, plus the gradient times the position difference, are used:

c0 = [gF(r0)� gz(r0)] (31)

A0 = r[gF(r0)� gz(r0)] (32)

rr = [r1 � r0] (33)

This method has previously shown to very significantly decrease the computation time of Carte-
sian MCPI iterations for Monte Carlo simulations.11 Of significance however, we anticipate the
state/co-state differential equation systems (corresponding to optimal transfer formulations based
on the MEE variation of parameter differential equations) to converge over much longer time inter-
vals (several orbits, as opposed to a fraction of one orbit for the Cartesian case). This will almost
certainly lead to substantial advantages for the case of the MEE formulation for optimal orbit trans-
fers and the generation of extremal field maps for multi-rev transfers. Specifically, MCPI can only
solve (without shooting) for optimal transfers over a fraction of an orbit for the Cartesian case, but
we anticipate being able to solve optimal transfers for 3 to 5 orbits without a shooting method using
MCPI for the MEE state/co-state system of differential equations.

MONTE CARLO SIMULATION

Matlab R2013a

Simulation results are obtained on a Windows 8 machine using Matlab R2013a, where all MCPI
results are tuned such that the best performance is achieved while still maintaining an energy check
(constant hamiltonian). For the present study, four cases are considered: LEO (e = 0.1), MEO (e
= 0.3), GTO (e = 0.6), and HEO (e = 0.7). The results for LEO and MEO are given here. Figures
(9) - (12) show the Monte Carlo point clouds for both the MEE solution and the solution using
Cowell’s method (integration of the Cartesian acceleration form of the equations of motion using
ECI coordinates) for the LEO case. The Cartesian and MEE Solutions match to 10 digits of accuracy
in the final state point clouds; the overlapping points showing different colors is simply an artifact
of the graphics (a 3-D rotation in Matlab shows that they overlap very well). Implementation on
a compute cluster further increases the efficiency of this method, as described in the next section.
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All Monte Carlo trajectories may be implemented in parallel on the compute cluster, decreasing the
computation time.

Figure (13) shows the speedup achieved when using the local Taylor Series gravity model vs.
using spherical harmonic gravity for a one-orbit LEO case. An initial study on a compute cluster
using only the constant offset term of the Taylor Series expansion, for intermediate MCPI iterations
on each neighboring trajectory, shows some speedup as well.
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Figure 13. Timing Comparison Over 1 LEO Orbit Using Taylor Series Gravity vs.
Spherical Harmonic Gravity

Compute Cluster

The simulation results presented in this section are executed on the Texas A&M University’s
Land, Air, and Space Robotics (LASR) Laboratory Space Situational Awareness (SSA) Cluster.
The LASR SSA Cluster is a 16 node compute cluster dedicated to astrodynamics research. Each of
the compute nodes has a pair of Intel Xeon 2.6GHz CPUs and 64GB of RAM. In total the LASR
SSA Cluster has 192 cores and a theoretical maximum compute capacity of approximately 1.99
TeraFlops. A Message Passing Inteface (MPI) is used for this configuration.

This simulation takes advantage of existing MCPI optimization schemes such as segmenting one
orbit per segment, using radial adaptive gravity, and a version of Taylor Series gravity that incorpo-
rates the constant offset term only.11, 23, 24 However, this study currently computes the full gravity
at least once for each trajectory, rather than just for the nominal trajectory, while incorporating the
Taylor Series gravity for intermediate iterations. Future simulations will expand such that the same
method is used as in the Matlab studies, to include the second term of the Taylor Series expansion
(which includes the Jacobian term) and to use this method for computing trajectories neighboring
the nominal. One million MEO trajectories are used for this simulation, where the initial conditions
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are specified to be

r0 = [�6365.554 2087.458 878.918] km (34)

v0 = [�1.635 � 6.597762 3.5058499] km/s (35)

The initial and final position of the trajectories are shown in Figure (14). The total computation
time for the Cartesian case is 58,478 seconds, while the total computation time for the MEE Case
is 52,969 seconds. When taking into account that the cluster utilizes 192 cores for each simulation,
this gives a compuation time of about 5.1 minutes for the Cartesian case and about 4.6 minutes for
the MEE case (a 10% reduction in computation time).

Figure 14. Monte Carlo Using One Million Trajectories in a MEO Orbit

CONCLUSION

Propagation of the Modified Equinoctial Orbital Elements using Modified Chebyshev Picard Iter-
ation allows for an efficient computation of many Monte Carlo simulations, particularly for higher
degree and order gravity and when multiple orbits may be used for a single MCPI segment. In this
manner, the probability density distribution and its first few moments may be inferred, giving in-
sight into the initial state errors and uncertainty parameters. A local Taylor Series algorithm allows
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for decreased computation time for the fully perturbed, spherical harmonic model. Since the local
Taylor Series approximation computes neighboring trajectories of the nominal, the approximations
may be computed in parallel on a compute cluster, thereby reducing the computation time greatly.
These results allow for insight into the uncertainties of the initial conditions. The optimum number
of orbits per MCPI segment will almost certainly be a number of orbits less than the maximum num-
ber over which MCPI converges for MEE coordinates. We are presently engaged in optimization of
the MEE process, and expect the worst case to be a significant speedup compared to the Cartesian
case. However, we do not expect order of magnitude speedups will result on a serial machine. These
results are expected to show considerable speedup when implemented on a compute cluster.
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