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A new method for propagating uncertainty through a general nonlinear dynami-
cal model with a parametric model of perturbations (such as aerodynamic drag) is 
developed. The model is constructed such that all of the model uncertainty is as-
sumed to be embodied in a random vector of parameters. Initial state errors and the 
uncertain parameters are assumed to belong to specified (known) probability density 
functions (PDFs). In lieu of Monte Carlo Methods or other methods devised to char-
acterize uncertainty, the present method identifies the region of extreme probability at 
the time of interest and populates that region with structured points and identifies the 
associated probability based on the a-priori PDF. By this method, these controllably 
dense points throughout the state space lead to an approximation for the non-linearly 
distorted non-Gaussian PDF at an arbitrary time t with a rigorous relationship to the 
a-priori probability density, and therefore doing any probabilistic analysis reduces to 
operations on simple interpolation functions. The non-conservative effects of drag are 
also accounted for computing the PDF at the time of interest. The method is then ap-
plied to compute the probability of collision for cases of resident space objects (RSOs) 
and compared against classical probability of collision techniques (state transition ma-
trix (STM) based methods). The present approach has proven effective in quantifying 
uncertainty and computing the probability of collision without relying on the compu-
tationally expensive Monte Carlo methods or the low order low fidelity S TM based 
methods.

1. Introduction

An accurate assessment of an RSO state uncertainty is vital to answering ques-
tions related to key SSA challenges, such as conjunction analysis, probability of col-
lision or uncorrelated track association, [1–8]. The State Transition Matrix (STM)
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based methods assume that the dynamics are linear and the posterior PDF remains
Gaussian,[9–11]. The Fokker-Planck equation, known to capture the evolution of the
initially Gaussian PDF in nonlinear dynamical systems, can be solved numerically to
capture the evolution of the PDF,[12–15]. The current standard method for high fidelity
propagation of uncertainty is using Monte Carlo (MC) based methods to generate his-
tograms or kernel density estimates,[16–18]. MC based methods tend to be highly
accurate, but suffer from the drawback of high computational cost. Other recent meth-
ods to quantify uncertainty include Gaussian Mixture Models (GMMs) and Polynomial
Chaos Expansions (PCEs) with several contributions to apply those methods to the
orbit problem, [17, 19–24].

All of the above mentioned methods are not capable of providing a general de-
scription of the posterior PDF, especially at higher levels of uncertainty, without ex-
treme cost. In provious work the method of orthogonal uncertainty quantification was
introduced,[25]. By placing structured points at the time of interest in the regions of
extreme probability, the method approximates the non-Gaussian PDF at the time of
interest by associating it with the known a-priori PDF at the initial time. A simple step-
by-step schematic for a one-dimensional system is shown in Figure 1. The method
quantifies uncertainty at the time of interest t f , given a known distribution at some
initial time t0. The known distribution at t0 and the unknown distribution at t f are rep-
resented by the solid and dotted lines, respectively as shown in Figure 1((1)). By
knowing the initial probability distribution the extreme bounds can be determined and
propagated forward in time as depicted in Figure 1((2)). Next, the region of extreme
probability is populated with nodes (cosine nodes in our example) at the time of in-
terest as in Figure 1((3)). The evaluation nodes are then back propagated in time
and compared to the a-priori probability distribution to get a value for the probability
density at the final time, Figure 1((4)). The values obtained from the a-priori PDF are
then used to generate an analytical approximation for the posterior PDF as depicted
in Figure 1((5)).

The method was shown to be highly efficient for analysis in lower dimensions and
capable of accurately describing the posterior PDF with very high precision. It showed
orders of magnitude improvement in computational cost when compared to the clas-
sical Monte Carlo approach. Remarkably, this approach makes the low probability
density region of the PDF be much more accurately defined (than is routinely feasi-
ble via Monte Carlo, due to slow convergence and the associated high computational
cost).

In this work, building on the previously developed approach, the approximation
of probability for various RSOs in higher dimensions with non-conservative effects
(atmospheric drag) is addressed. This probability analysis is used to compute the
probability of collision for RSOs in six degrees of freedom in the presence of uncer-
tainty in the velocity states. Several numerical examples are introduced and compared
against existing methods such as traditional Monte Carlo methods. Additionally, two
enhancements, one based on sparse grid quadrature and one leveraging Monte Carlo
analysis, are introduced to address curse-of-dimensionality issues that arise in higher
dimensions.
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((1)) PDF at Initial and Posterior Times

((2)) Propagation of the Extremal Probability
Bounds

((3)) Nodes Distributed at Posterior Time

((4)) Back-propagation form the Evaluation Nodes
to Determine the A-priori Probability Density

((5)) Probability Density Approximation Generated

Figure 1: Steps of Orthogonal Uncertainty Quantification
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2. Extension of OPA for Orbital Dynamics

2.1. Region of Interest (ROI) Identification
It is possible to find the R two dimensional problem by sweeping along an extremal

probability contour. However, if the method was then extended into 3 dimensions
it would be analogous to finding the bounds on a constant probability surface. In
the simplest case this would require the identification of evenly space points on a
sphere. This challenge is known as Thomson problem, which originally dealt with
finding the minimum energy configuration for electrons on a unit sphere. This problem
is famously unsolved, and this does not even consider the difficulty when examining
more than 3 dimensions, [26]. In light of this difficulty, a different method was devised
that relies on a slightly modified version of Liouville Monte Carlo (LMC), [25]. Instead
of spanning the entire probability space using LMC, points are only propagated along
trajectories that originate from a surface where the value of probability density matches
the extreme value of interest. These points are selected by first defining a specific
probability and a value for a random state arbitrarily chosen from the range compatible
with selected probability. Then each other state is defined in a random order, again
randomly selecting a value compatible with the remaining probability, until the final
state remains. This final state is defined by the other states and the state probability.
The results of this constant probability LMC can then be used to find the bounds of
the extremal region. This method requires the same order of forward propagations
in two dimensions as method of uniformly sweeping around the contour of extremal
probability and is easily extensible to higher dimensions. In order to find the region of
intersection in higher dimension, constant probability LMC is used. Enough trajectories
are propagated from uniformly distributed initial conditions with the defined extremal
probability to define a region of the state space spanned by the reasonable terminal
states of the objects being considered. An example result of this process can be seen
in Figure 2. For cases where the intersection of probabilities is being considered,
such as probability of collision, the combined ROI can be limited to the overlap of two
individual ROIs; As demonstrated with a pair of 3D ROIs in Figure 3.

2.2. Dealing with Volume Change
The probability density is no longer conserved when considering non-conservative

systems. However, since the total probability within the PDF must be constant, the vol-
ume of the probability must be conserved. Consequently, the probability density value
is scaled proportionally to the change in the volume at each evaluation node. This
change in volume can be computed by comparing the volume surrounding evaluation
nodes at both the initial and final configurations. For any two dimensional case, the
volume change can be estimated by constructing a series of triangles with the evalua-
tion nodes as their vertices. The a-priori and posterior area for each of these triangles
can be computed using the Shoelace Theorem Eq. (1) in its triangular form Eq. (2).

A =
1
2

∣∣∣∣ n−1∑
i=1

xiyi+1 + xny1 −

n−1∑
i=1

xi+1yi − x1yn

∣∣∣∣ (1)

=
1
2
|x1y2 + x2y3 + x3y1 − x2y1 − x3y2 − x1y3 (2)
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Figure 2: Comparison of Extremal Bound Algorithms in Two Dimensions
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Ẋ

X

6 σ Bounds Intersection

C

Figure 3: Intersecting Extremal Probability Region
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((1)) Gridded Evaluation Nodes Prior to Back-Propigation

((2)) Gridded Evaluation Nodes after Back-Propigation

Figure 4: Evolution of the Area Spanned by Evaluation Nodes
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A demonstration of how the area surrounding evaluation nodes can be transformed
as the nodes are back-propagated to the initial time can be seen in Figure 4.

The method of accounting for volume change from 2.2 can be extended to arbitrarily
high dimensions by considering the volume of an n-dimensional simplex. The equation
for a generic simplex volume is shown in Eq. (3), where v0...vn represent the vector
locations of the simplex vertices.

V =
∣∣∣∣∣ 1
n!

det
(
v1 − v0, v2 − v0, . . . , vn − v0

)∣∣∣∣∣ (3)

This determinate operation (≈ O(n3)) clearly becomes extremely computationally
intensive as n increases. It may be possible to alleviate this computational cost by
using a cruder approximation to compute the volume change, but that is beyond the
scope of this effort.

3. Orbital Results

OPA can be applied for various applications in the realm of space domain aware-
ness. The most obvious application is the generation of a PDF for a planar orbit. The
resulting orbit PDF is shown in Figure 5 and the cumulative probability for the PDF is
demonstrated to be one over the entire PDF, as shown in Figure 6.

Table 1: Planar Orbit Parameters

Orbit 1
a 5.466
e 0.975
M π
t0 0
t f 30

Once approximation is achieved for a single RSO PDF it is possible to extend to
the probability of collision for multiple RSOs, with minor modifications. This constant
probability LMC is carried out for to generate the probable region in the posterior state
space in all four dimensions (X,Y, Ẋ, Ẏ), the result of which is used to define the region
in X and Y that will be populated with the approximation nodes, as shown in Figure 8,
[25]. The probability in the Ẋ and Ẏ dimensions is then marginalized into the spatial
dimensions for each RSO independently. The result is a pair of overlapping marginal
probabilities defined at the specified approximation nodes as shown in Figure 9.

These marginal probabilities in X and Y are used to generate approximations for
the probability density of the RSOs over the region of interest. The local probability of
collision, P(colision|X = x,Y = y) is then computed to generate an approximation for the
probability of collision, as depicted in Figure 10. Finally, the total probability of collision
can be computed by integrating over the resulting surface. Unfortunately, it becomes
somewhat computationally impractical to extend standard OPA beyond planar orbits.
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Figure 5: Spatial OPA Result for Planar Orbit

12.6835 12.6835 12.6835 12.6835 12.6835 12.6835 12.6835 12.6835 12.6835 12.6835 12.6835

0

0.2

0.4

0.6

0.8

1

X Span

C
u
m
u
la
ti
v
e
P
ro
b
a
b
il
it
y

Figure 6: Cumulative Probability for Planar Orbit PDF
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Figure 7: Planar Orbits Considered
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Figure 10: Probability of RSO Conjunction
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3.1. Velocity Only Orbital Results
One notable application of this method that avoids the difficulties of dimensionality

is predicting the position of an RSO with a known initial position but uncertainty in
its initial velocity. This case is relevant for an RSO deployed from another spacecraft
with an extremely well known orbital position. One example is cubesats or smallsats
deployed from the International Space Station (ISS). The deployers for these small
spacecraft tends to be mounted on a robotic arm and rely on a spring to push the
satellite away from the ISS, resulting in approximately exact knowledge of position and
uncertainty in velocity. AggieSat4, shown in Figue 11, is one example of such an RSO.

In this case the ROI is determined using the LMC holding the position fixed and
varying velocity according to the probability distribution. Once the range of final po-
sitions is determined and the evaluation node grid is established the initial and final
velocities that associate each node and the initial point can be determined using a
Lambert solver. The initial probability can be found by comparing each initial velocity
to the a-priori PDF, and the final probability can be found by modulating the initial prob-
ability based on the volumetric change. The process of applying OPA to an RSO with
only initial velocity uncertainty is depicted in Figure 12, with the initial point shown as
a light blue circle, the ROI in red, the evaluation nodes as dark blue x’s, and a subset
of Lambert trajectories in green.

A probability of collision analysis using this method was performed on two objects
with the orbital properties shown in Table 2. This analysis was preformed twice with
two levels of velocity uncertainty (σ2

Vx
, σ2

Vy
, σ2

Vz
), two different radii of collision (rc ), and

various times of closest approach (TCA in orbital periods) , and compared to a Monte
Carlo analysis, with the results displayed in Table 3.

Table 2: Conjuncting RSO Parameters

” ” RSO 1 RSO 2
a 10000 km 10000 km
e 1.0e-7 1.0e-7
i 90.0 90.0
ω 0.0 0.0
i 0.0 90.0

σ2
x, σ

2
y 10.0 km2 10.0 km2

σ2
Vx
, σ2

Vy
0.01 (km/s)2 0.01 (km/s)2

Table 3: Probability of Collision RLMC vs MC

σ2
V rc km TCA PCLMC PCMC % Error MC Size (Millions)

1 ∗ 10−7 0.1 0.25 1.60E-04 1.51E-04 6.4% 100
1 ∗ 10−7 0.1 0.75 3.68E-06 3.93E-06 6.3% 100
1 ∗ 10−7 0.1 1.25 4.83E-06 4.45E-06 4.5% 100
1 ∗ 10−4 10 0.25 5.07E-03 5.28E-03 3.9% 100
1 ∗ 10−4 10 0.75 1.16E-04 1.17E-04 1.0% 100
1 ∗ 10−4 10 1.25 1.53E-04 1.67E-04 8.6% 100
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Figure 11: AggieSat4 being Deployed from the ISS

Figure 12: OPA Applied to RSO with Velocity Uncertainty
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4. Further Enhancements for Orthogonal Probability Approximation for Orbital
Dynamics

The main objective of this effort is to use Orthogonal Probability Approximation to
perform probabilistic analysis. This requires extending OPA to work higher dimensions
so that it can form approximations in a four dimensional space to examine planar
orbits, the six dimensional space for a full perturbed orbital problem, and eventually
even higher dimensions to examine uncertainty in the unknown parameters that govern
the dynamic system. This section explains enhancements to OPA that increase its
effectiveness and performance in higher dimensions.

4.1. Dimensionality
The standard version of OPA can be extended into higher dimensions with minimal

modification. The obvious drawback of this is that the method clearly suffers from
the curse of dimensionality. As you increase the number of dimensions the nodes
required to span the space increase exponentially (O(Mn) where M is the order of the
approximation). This means that as the dimensionality increases standard OPA will
become computationally intractable.

4.2. Region of Approximation Segmentation
One drawback of using Chebyshev polynomials as a method for approximation and

integration is that they rely on cosine sampling. As a result using a standard scheme
for Chebyshev polynomials results in having the lowest resolution in the center of the
region of approximation and greatest resolution at the edges. This is the opposite
of what is desired for the approximation of PDFs. It is preferable to have the greatest
sampling near the nominal trajectory, which is generally near the center of the ROI and
less information near the bounds where the probability density values are exceedingly
small. This frequently results in a requirement for exceedingly high orders to achieve
adequate sampling in the center of the ROI to capture the character of the PDF. Given
that OPA suffers from the curse of dimensionality when considering higher dimensions
this can lead to significant computational cost. A similar issue was encountered with
Orbital MCPI, where achieving the required accuracy took to many evaluation nodes
causing a lack of efficiency, [27]. This challenge was addressed by breaking the ap-
proximation arc into smaller segments and judiciously selecting segmentation bounds.
In a similar fashion, the ROI can be broken up into smaller segments in a modified ap-
proximation and integration scheme based on repeated cosine sampling. This consists
of a pair of cosine sample regions with that share an overlapping node. The overlap-
ping node ensures the continuity of the approximate surface and allows for the use
of a function evaluation in both segments. The repeated cosine sampling scheme is
descried in Equations 4-6. In the case of a single PDF approximation the overlapping
node, Xo is placed so that it lines up with the nominal trajectory, as shown in Figure 13,
and in the case of a conjunction it is aligned with the Center of the ROI. The integral of
each of the two segments is computed and the results are added together to get the
full integral for the region.

ξ = −cos(
jπ
M

), j = 1, 2, ...,M (4)
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Figure 13: Segmented Repeated Cosine Sampling

xk,0,...,M =
1
2
∗ (ξ + 1) ∗ (Xo − Xl) + Xl (5)

xk,M+1,...,2∗M =
1
2
∗ (ξ2,...,M + 1) ∗ (Xu − Xo) + Xo (6)

The considerations for volumetric change are not required when considering con-
stant parametric dimensions of uncertainty. The distribution of nodes along these di-
mensions remain constant throughout the time evolution of the system, as a result of
the probability density for nodes along those dimensions is also constant.

4.3. Region of Approximation Alignment
Another challenge that results from moving into higher dimensions is that the mis-

alignment between the ROI and the distribution of the PDF results in more and more
empty space as the dimension increases, resulting in greater computational cost. This
cost can be reduced by transforming the ROI into a coordinate system that is better
aligned with the distribution of the PDF. To achieve this the results of the LMC propaga-
tion can be used to generate a pseudo-covariance for the system, using the statistical
definition for covariance. The expression for computing the pseudo-covariance for a
two dimensional case is shown in Eq. (7), where E(XLMC) and E(YLMC) are simply de-
fined as the means of their respective quantities. Preforming eigen-analysis can now
provide the approximate principal alignment of the PDF and provide the information
required to rotate into an aligned coordinate system.

pseudo-cov(X,Y) =
1
n

n∑
i=1

(xi − E(XLMC))(yi − E(YLMC)) (7)
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Figure 14: ROI Aligned Based on Pseudo-Covariance

A two dimensional example of this transformation is shown in Figure 14. The nominal
trajectory is shown as a green square results of the initial LMC propagation are shown
in blue. The mean of the LMC results is shown in red and the pseudo-covariance el-
lipse is plotted in cyan. The ROI was computed using the original method and again
in a transformed coordinate system that is aligned with the pseudo-covariance ellipse,
plotted in black and magenta, respectively. The amount of empty space from the origi-
nal method is significantly greater than what results from the adjusted ROI. This reduc-
tion in empty space translates into fewer wasted function evaluation and a reduction in
the required order to adequately approximate the PDF.

4.4. Marginal Dimension Isolation
For forcing functions where initial variation in the marginal dimension state compo-

nents can result in wide variation of the initial state, such as the accelerations resulting
from orbital dynamics, approximation of the probability integral in the marginal dimen-
sions can be extremely difficult. This occurs because most of the marginal dimension
results in no contribution to the probability, so the samples of the approximation method
are wasted by incorporating a contribution of zero as opposed to sampling areas that
contribute to the probability. This can be addressed by fixing the consequential dimen-
sion variables and using LMC in reverse within the marginal dimension to isolate the
region that contributes to the probability. If there is a concern that the dynamics in the
marginal dimension may be multi-modal a clustering algorithm, such as k-means can
be used to identify the different regions of the dimension that must be considered. It
is also possible to identify the portion of the marginal dimensions that contribute prob-
ability using a boundary-value solver, such as the Lambert solver from Section 3.1, a
shooting method, or the Method of Particular Solutions, [28].
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4.5. Dimensions of Parametric Uncertainty
It is possible to extend the method of orthogonal probability approximation to con-

sider the effect of parametric uncertainty of a dynamic system. This is achieved by
expanding the dimensions considered to include non-physical dimensions that repre-
sent possible range for the parameter of interest. Since the parameters of the dynamic
system are constant through time all derivatives of any system parameter C should
be 0, dC

dX = 0. For example if the ballistic coefficient of an orbiting spacecraft is poorly
characterized, augmenting the state with a parametric dimension spanning the pos-
sible values of the ballistic coefficient allows for the system to be propagated and
analyzed with OPA to evaluate with the associated probability. This dimension is then
marginalized into the consequential dimensions for the final probabilistic analysis, as
described in Figure 15.

Figure 15: Damping as a Dimension of Parametric Uncertainty

5. OPA with Alternate Quadrature

One of the major drawbacks of extending OPA to higher dimensions is that it begins
to suffer from the curse of dimensionality. The introduction of each new dimension
results in an exponential increase in the required function evaluations. Additionally,
as described in section 2.1, the cost of accounting for the volume change increases
in higher dimensions. These combined factors make relying on OPA as presented
in higher dimensions infeasible. Many of these difficulties result from the specifics
of Clenshaw–Curtis quadrature, the method underling the approximation at the core
of OPA. Clenshaw–Curtis quadrature was selected because in the consequential di-
mensions Multi-dimensional Clenshaw–Curtis provides the capacity for functional ap-
proximations that can then be used for the required computations. However, in the
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marginal dimensions Clenshaw–Curtis was selected as a matter of convenience and
compatibility with the quadrature used for the consequential dimensions. This method
of quadrature can be replaced for the marginal dimensions to reduce the cost, while
maintaining Clenshaw–Curtis (and the functional approximation) for the consequential
dimensions. Two alternate methods of quadrature are explored, Smolyak Sparse Grid
and Monte Carlo.

5.1. Sparse Grid OPA
Originally developed by Russian Mathematician Sergey Smolyak as a method for

integrating and interpolating higher dimensional functions based on sparse tensor
products. Instead of the representing functions with approximations based on full
tensor grids Smolyak quadrature is based on a univariate quadrature rule Q(1). The
n-dimensional Smolyak integral Q(d) of a function f can be written as a recursion for-
mula with the tensor product, as shown in Eq. (8). This quadrature rule has been
developed into an efficient set of weights for computational purposes, [29]. The result-
ing evaluation nodes for 2D and 3D can be seen in Figure 16 and Figure 17. While the
number of evaluation nodes is comparable in lower dimensions (1D and 2D), Figure 18
demonstrates that as the dimension increases there are substantial cost savings.

Q(n)
l f =

 l∑
i=1

(
Q(1)

i − Q(1)
i−1

)
⊗ Q(n−1)

l−i+1

 f (8)
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Figure 16: Comparison of Cosine and Smolyak Sampling Nodes
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Figure 17: Comparison of Cosine and Smolyak Sampling Nodes

19



1 2 3 4 5 6 7 8 9 10

Node Number

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

F
u
n
c
ti
o
n
 E

v
a
lu

a
ti
o
n
s

Cosine Grid Nodes

Smolyak Grid Nodes

Figure 18: Comparison of Function Evaluations Required for Cosine and
Smolyak Grids

This modification, Orthogonal Probability Approximation-Sparse Grid (OPA-SG),
was used to propagate the uncertainty of a single RSO considering a planar orbit (four
dimensions). The resulting PDF and the cumulative probability are shown in Figures
19-20. Finally, Figure 21 shows how OPA-SG being used to estimate the uncertainty
of a 6-DoF orbital state. The marginal probabilities from the velocity dimensions are
collapsed into the 3 spatial dimensions shown. As with previous PDF approximation
examples the total probability is approximately equal to one, without being forced.

Figure 19: Approximation of PDF propagated with OPA-SG
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Figure 20: Cumulative Probability of PDF propagated with OPA-SG

Figure 21: 6-DoF Probability Marginalized to 3-DoF
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5.2. Semi-Stochastic OPA
Another method to address the failings of OPA related to the challenge of extension

to higher dimensions is to modify it such that the quadrature in the marginal dimensions
is preformed with with Monte Carlo (MC) or quasi-Monte Carlo (qMC) methods. Like
the integration of the sparse grid quadrature techniques this leverages the advantages
of OPA in the consequential dimensions while reducing the cost of high dimensional
quadrature in the marginal ones. MC methods have a convergence rate of O(N−0.5)
and qMC methods converge at a rate approaching O(1/N) independent of the dimen-
sionality, which can provide significant savings,[30]. While this method tends to be
more costly than the sparse grid methods for dimensions around three, for cases with
a high number of marginal dimensions it will be more efficient. Additionally, using MC
or qMC methods allows for the consideration of a system that has uncertain param-
eters that can not be well parameterized (those driven by a random process), while
standard OPA or OPA modified for use with spare grids cannot.

This modification, Orthogonal Probability Approximation-Monte Carlo (OPA-MC),
was used to propagate the uncertainty of a single RSO considering a planar orbit with
drag (five dimensions). The resulting PDF and the cumulative probability are shown in
Figures 22 and 23.

Figure 22: Approximation of PDF propagated with OPA-MC
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Figure 23: Cumulative Probability of PDF propagated with OPA-MC

6. Conclusion

Further development of Orthogonal Polynomial Approximation has integrated im-
proved capabilities to approximate probability in higher dimensions. This includes the
development of practical enhancements including approximation grid segmentation
and region of interest alignment and the integration of parametric uncertainty. OPA
was used to preform probability of collision analysis for a planar orbital collision and a
6-DoF collision in the presence of velocity uncertainty.

Additionally, two new formulations of OPA were introduced to help manage the
challenges presented by the curse of dimensionality. Both of these new method use
different quadrature to integrate the probability in the mrginal dimensions. The fist is
OPA with sparse grid quadrature. Sparse Grid OPA relies on Smolyak quadrature to
integrate the probabilities in the marginal dimensions, greatly reducing the function
evaluations require especially as the dimension increases. The second new formula-
tion, Semi-Stochastic OPA, uses stochastic methods to integrate thje marginal proba-
bilities. This reduces the required function evaluations in higher dimensions and allows
for the integration of stochastic uncertainty. These new formulations will allow OPA to
be extended and used for full 6-DoF collision analysis and further to include parametric
uncertainty and stochastic processes.
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