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A HIGH ORDER ANALYTIC CONTINUATION TECHNIQUE FOR 
THE PERTURBED TWO-BODY PROBLEM STATE TRANSITION 

MATRIX 

Tahsinul Haque Tasif,* and Tarek A. Elgohary† 

In this work, the analytic continuation technique is used to derive the State 

Transition Matrix for the perturbed two body problem resulting in a fast, high 

precision solution that outperforms state of the art numerical methods. Analytic 

Continuation is a Taylor series based technique where two scalar Lagrange-like 

invariants (f = r.r and gp = f -p/2) are defined and differentiated to an arbitrary 

order by using Leibniz product rule. These derivatives are used in a Taylor 

series expansion to obtain the solution. Previously, this method has been applied 

to several trajectory calculations, that resulted in high precision solutions for 

both position and velocity with a comparatively lower computational cost. As 

future work, the method will be expanded to solve the perturbed multi 

revolution Lambert’s problem. 

INTRODUCTION 

The fast-growing space industry is focusing on the robotic and nanosatellites to autonomously 

rendezvous and dock with other satellites to carry out complex jobs like refueling and repairing.1 

It is not possible to carry out these tasks without high precision in error propagation of the initial 

state vector. Autonomous satellite navigation also requires frequent update of the state vector and 

the covariance matrix. For an instance, GPSPAC navigation system processes Global Positioning 

System (GPS) data every 6 seconds.2,3 However, nanosatellites work on low power budget, which 

requires an orbit determination algorithm that can run on processors that consume comparatively 

low power with high precision results.4 Lambert’s problem is another fundamental problem in 

Astrodynamics, which solves for targeting spacecraft and missiles. It is dependent on the sensitiv-

ity towards the initial state vector and the State Transition Matrix (STM) can be utilized to solve 

the problem. The computation cost for the STM is comparatively higher than other components 

of the whole orbit determination procedure because of the cumbersome computation of the Jaco-

bian Matrix.5   

The STM in astrodynamics describes how errors in initial position and velocity propagate over 

time. It works as a sensitivity matrix. Hence, it can also be used in control theory to calculate and 

minimize the errors of the initial states.6 There already exists an exact analytical representation of 

the two-body cartesian STM presented by Goodyear.7 The process is relatively easy for computa-

tion and valid for all types of orbits for the attractive force, and for the hyperbolic and rectilinear 
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orbits for the repulsive force.7 However, it requires the evaluation of transcendental functions. 

Additionally, it is not easy to introduce third body perturbation in this method.3 Kuga simplified 

this method to increase the numerical efficiency for the Keplerian elliptical orbit.5,8 However, this 

simplified method does not include the J2 perturbation term.5 Markley presented an approxima-

tion to the cartesian STM.3 Although J2 perturbation can be included in Markley’s method and the 

method can be applied into the n-body problem, it is restricted by short time intervals. This meth-

od can include the J2 perturbation term only up to 6 seconds time step.3 Julie Read, et al. applied 

Modified Chebyshev Picard Iteration to formulate STM with Spherical Harmonic Gravity model, 

which is well suited for parallel implementation for additional speed of computaiton.15 Recently 

Hatten and Russel developed a decoupled direct method using fixed step size Runge-Kutta meth-

od for first and second order STM, which decouples the state propagation and the solution of the 

STMs to make the calculation computationally efficient.14  

Yamanaka and Ankersen linearized the differential equations of relative motion on elliptical 

orbits and derived a convenient STM for practical engineering application, which is valid for all 

unperturbed elliptical orbits.16 Gim and Alfriend developed geometric method to derive the STM 

for relative motion with gravitational perturbation, which uses the relationship between the rela-

tive states and differential orbital elements.17 Koenig, et al. used classical Keplerian orbit ele-

ments to derive the STM and incorporated J2 and differential drag.18 

The Analytic Continuation method is a numerical integration method based on Taylor series 

expansion and Leibniz product rule. Previously this method has been proved very precise in solv-

ing several two body unperturbed trajectories.9 Later on, J2-J6 gravity perturbation terms were 

introduced in the approach.10 Work had also been done to introduce atmospheric drag in two body 

problem with this method.11 In this paper, the Analytic Continuation Method is used to derive the 

State Transition Matrix for the perturbed two-body problem. As an initial step, results for the un-

perturbed case have been compared with Lagrange’s F & G solution. The method is then expand-

ed for the J2 perturbation term and compared against ODE45 (based on Runge Kutta (4,5) integra-

tion method13). The results show the symplectic check and provide a high precision solution for 

the newly derived STMs.  

ANALYTIC CONTINUATION FOR DERIVING THE STM 

The Analytic Continuation technique relies on the definition of two Lagrange-like invariants 

as, f = r.r and gp = f -p/2 where r is the position vector. For the state variables (position and veloci-

ty) propagation for the two-body problem, the acceleration vector is given by, 

𝒓 2  𝑡 =  −𝜇
𝒓 𝑡 

 𝒓 𝑡 . 𝒓 𝑡  
3 2 

  

  
(1) 

where, r(t) is the current position vector and µ is the standard gravitational parameter.  

Leibnitz product rule is then used to compute higher order derivatives of the variables via the 

recursive formulas: 

𝒓 𝑛+2  𝑡 =  −𝜇   
𝑛
𝑚

 

𝑛

𝑚=0

𝒓 𝑚  𝑡 𝑔3
 𝑛−𝑚 

(𝑡)  

 

  

(2) 
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𝑓 𝑛 (𝑡) =    
𝑛
𝑚

 

𝑛

𝑚=0

𝒓 𝑚 (𝑡). 𝒓 𝑛−𝑚 (𝑡)  

 

(3) 

𝑔3
 𝑛+1 

(𝑡) =  −
1

𝑓(𝑡)
 
3

2
𝑓 1 (𝑡)𝑔3

 𝑛 
(𝑡) +   

𝑛
𝑚

 

𝑛

𝑚=1

 
3

2
𝑓 𝑚+1 (𝑡)𝑔3

 𝑛−𝑚 
(𝑡) + 𝑓 𝑚 (𝑡)𝑔3

 𝑛−𝑚+1 
(𝑡)    

  

(4) 

Finally, the higher order derivatives of the acceleration are substituted into the Taylor series 

expansion to obtain position and velocity as shown in Eq. (5) and Eq. (6), 

𝒓 𝑡 + 𝑑𝑇 = 𝒓 𝑡 +   𝒓(𝑚) 𝑡 

𝑛

𝑚=1

𝑑𝑇(𝑚)

𝑚!
 

 

(5) 

𝒓(1) 𝑡 + 𝑑𝑇 = 𝒓(1) 𝑡 +   𝒓(𝑚) 𝑡 

𝑛

𝑚=2

𝑑𝑇(𝑚−1)

 𝑚 − 1 !
 

 

(6) 

The STM for the two-body problem is defined as, 6,12 

ф =   
ф11 𝑡 + 𝑑𝑇, 𝑡 ф12 𝑡 + 𝑑𝑇, 𝑡 

ф21 𝑡 + 𝑑𝑇, 𝑡 ф22 𝑡 + 𝑑𝑇, 𝑡 
 =  

 
 
 
 
 

𝜕𝒓 𝑡 + 𝑑𝑇 

𝜕𝒓 𝑡 

𝜕𝒓 𝑡 + 𝑑𝑇 

𝜕𝒓(1) 𝑡 

𝜕𝒓(1) 𝑡 + 𝑑𝑇 

𝜕𝒓 𝑡 

𝜕𝒓(1) 𝑡 + 𝑑𝑇 

𝜕𝒓(1) 𝑡  
 
 
 
 

 

 

(7) 

 

 

where, Ф11 is the sensitivity of the next position to the current position, Ф12 is the sensitivity of 

the next position to the current velocity, Ф21 is the sensitivity of the next velocity to the current 

position and Ф22 is the sensitivity of the next velocity to the current velocity.  

Following the same Taylor series expansion of the state variables the elements of the STM can 

be obtained from 

ф11 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓 𝑡 + 𝑑𝑇 

𝜕𝒓 𝑡 
=

𝜕𝒓 𝑡 

𝜕𝒓 𝑡 
+  

𝜕𝒓(𝑚) 𝑡 

𝜕𝒓 𝑡 

𝑑𝑇(𝑚)

𝑚!

𝑛

𝑚=1

 

 

(8) 

ф12 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓 𝑡 + 𝑑𝑇 

𝜕𝒓(1) 𝑡 
=

𝜕𝒓 𝑡 

𝜕𝒓(1) 𝑡 
+  

𝜕𝒓(𝑚) 𝑡 

𝜕𝒓(1) 𝑡 

𝑑𝑇(𝑚)

𝑚!

𝑛

𝑚=1

 

 

(9) 

ф21 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓(1) 𝑡 + 𝑑𝑇 

𝜕𝒓 𝑡 
=

𝜕𝒓(1) 𝑡 

𝜕𝒓 𝑡 
+  

𝜕𝒓(𝑚) 𝑡 

𝜕𝒓 𝑡 

𝑑𝑇(𝑚−1)

(𝑚 − 1)!

𝑛

𝑚=2

 

 

(10) 

ф22 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓(1) 𝑡 + 𝑑𝑇 

𝜕𝒓(1) 𝑡 
=

𝜕𝒓(1) 𝑡 

𝜕𝒓(1) 𝑡 
+  

𝜕𝒓(𝑚) 𝑡 

𝜕𝒓(1) 𝑡 

𝑑𝑇(𝑚−1)

(𝑚 − 1)!

𝑛

𝑚=2

 

 

(11) 

where, dT is the time step between the current position and the next position. 



 4 

The partial derivatives of r(t) and r (1)(t) with respect to r(t) and r (1)(t) can be written as, 

𝜕𝒓 𝑡 

𝜕𝒓 𝑡 
=

𝜕𝒓 1  𝑡 

𝜕𝒓 1  𝑡 
= 𝑰3×3 

 

 

(12) 

𝜕𝒓 𝑡 

𝜕𝒓 1  𝑡 
=

𝜕𝒓 1  𝑡 

𝜕𝒓 𝑡 
= 𝟎3×3 

 

 

(13) 

The partial derivatives of the higher order terms (up to sixth order) with respect to r(t) and r(1)(t) 

are shown in the Appendix. 

An approach is developed to calculate the series expansions of the 3×3 sub-matrices using re-

cursive formulas, so that the series can be extended to any arbitrary number of partial derivatives 

of the higher order terms. For this reason, a new variable F, is defined as, 

𝑭 ≡ 𝒓. 𝒓𝑻 
 

(14) 

The derived recursive formulas to calculate partial derivatives of the higher order terms with 

respect to position and velocity are given by, 

 

𝜕𝒓(𝑛+2) 𝑡 

𝜕𝒓 𝑡 
=  

𝜕𝒓(𝑛+3) 𝑡 

𝜕𝒓(1) 𝑡 
=  𝜇  3   

𝑛

𝑚
 

𝑛

𝑚=0

𝑔5
 𝑚 

(𝑡)𝑭 𝑛−𝑚  − 𝐼𝑔3
 𝑛 

(𝑡)  

 

(15) 

It is worth noting that Eq. (15) shows a symmetry in the evaluation of the position and veloci-

ty partials using the derived recursion. The algorithm of the whole process is shown in Table 1 

where, for brevity the notation r is used instead of r(t).      

  

Table 1. Algorithm for Unperturbed STM Computation using Analytic Continuation Method 

Initialize r(t0), r(t0)(1), dT 

for k = 1 to imax, where imax is the total time step   

𝒓 2 =  −𝜇
𝒓

 𝒓. 𝒓 3 2 
; 

 

𝑓 = 𝒓. 𝒓 ; 
 

𝑓 1 = 2𝒓. 𝒓 1  ; 
 

𝑓 2 = 2𝒓 1 . 𝒓 1 + 2𝒓. 𝒓 2  ; 
 

𝑔3 =  𝑓− 
3
2 ; 

 

𝑔3
(1)

=   −
3

2
 𝑓 1 𝑔3

𝑓
 ; 
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𝑔3
(2)

=   −
1

𝑓
  

3

2
𝑓 1 𝑔3

(1)
+ 

3

2
𝑓 2 𝑔3 + 𝑓 1 𝑔3

(1)
  ; 

 

𝑔5 =  𝑓− 
5
2 ; 

 

𝑔5
(1)

=   −
5

2
 𝑓 1 𝑔5

𝑓
 ; 

 

𝑔5
(2)

=   −
1

𝑓
  

5

2
𝑓 1 𝑔5

(1)
+ 

5

2
𝑓 2 𝑔5 + 𝑓 1 𝑔5

(1)
  ; 

 

for n = 1 to N, where N is the total number of derivatives 

𝒓 𝑛+2 =  −𝜇   
𝑛
𝑚

 

𝑛

𝑚=0

𝒓 𝑚 𝑔3
 𝑛−𝑚 

; 

 

𝑓 𝑛 =    
𝑛
𝑚

 

𝑛

𝑚=0

𝒓 𝑚 . 𝒓 𝑛−𝑚 ; 

 

𝑔3
(𝑛+1)

=  −
1

𝑓
 
3

2
𝑓 1 𝑔3

 𝑛 
+   

𝑛
𝑚

 

𝑛

𝑚=1

 
3

2
𝑓 𝑚+1 𝑔3

 𝑛−𝑚 
+ 𝑓 𝑚 𝑔3

 𝑛−𝑚+1 
   ; 

 

𝑔5
(𝑛+1)

=  −
1

𝑓
 
5

2
𝑓 1 𝑔5

 𝑛 
+   

𝑛
𝑚

 

𝑛

𝑚=1

 
5

2
𝑓 𝑚+1 𝑔5

 𝑛−𝑚 
+ 𝑓 𝑚 𝑔5

 𝑛−𝑚+1 
   ; 

 

end for 

𝒓 𝑡 + 𝑑𝑇 = 𝒓 𝑡 +   𝒓(𝑚) 𝑡 

𝑛

𝑚=1

𝑑𝑇(𝑚)

𝑚!
 ; 

 

𝒓(1) 𝑡 + 𝑑𝑇 = 𝒓(1) 𝑡 +   𝒓(𝑚) 𝑡 

𝑛

𝑚=2

𝑑𝑇(𝑚−1)

 𝑚 − 1 !
 ; 

 

𝜕𝒓

𝜕𝒓
= 𝑰3×3 ; 

 

𝜕𝒓 1 

𝜕𝒓 1 
= 𝑰3×3 ; 

 

𝜕𝒓 1 

𝜕𝒓
= 𝟎3×3 ; 

 

𝜕𝒓

𝜕𝒓 1 
= 𝟎3×3 ; 

 

 

for n = 1 to N 

𝜕𝒓(𝑛+2)

𝜕𝒓
=  𝜇  3   

𝑛

𝑚
 

𝑛

𝑚=0

𝑔5
(𝑚)

𝑭(𝑛−𝑚) − 𝐼𝑔3
(𝑛)

 ; 
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𝜕𝒓(𝑛+3)

𝜕𝒓(1)
 =  

𝜕𝒓(𝑛+2)

𝜕𝒓
;   

 

end for 

ф11 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓 𝑡 + 𝑑𝑇 

𝜕𝒓 𝑡 
=

𝜕𝒓

𝜕𝒓
+  

𝜕𝒓(𝑚)

𝜕𝒓

𝑑𝑇(𝑚)

𝑚!

𝑛

𝑚=1

 ; 

 

ф12 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓 𝑡 + 𝑑𝑇 

𝜕𝒓(1) 𝑡 
=

𝜕𝒓

𝜕𝒓(1)
+  

𝜕𝒓(𝑚)

𝜕𝒓(1)

𝑑𝑇(𝑚)

𝑚!

𝑛

𝑚=1

; 

 

ф21 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓(1) 𝑡 + 𝑑𝑇 

𝜕𝒓 𝑡 
=

𝜕𝒓(1)

𝜕𝒓
+  

𝜕𝒓(𝑚)

𝜕𝒓

𝑑𝑇(𝑚−1)

(𝑚 − 1)!

𝑛

𝑚=2

; 

 

ф22 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓(1) 𝑡 + 𝑑𝑇 

𝜕𝒓(1) 𝑡 
=

𝜕𝒓(1)

𝜕𝒓(1)
+  

𝜕𝒓(𝑚)

𝜕𝒓(1)

𝑑𝑇(𝑚−1)

(𝑚 − 1)!

𝑛

𝑚=2

; 

 

end for 

 

Next, J2 perturbation is applied to the states and the State Transition Matrix. In this case, the J2 

perturbation acceleration is defined as, 

𝑎𝐽2  =  −
3

2
𝐽2  

𝜇

𝑟2
  

𝑟𝑒𝑞

𝑟
 

2

 

 
 
 

 1 − 5  
𝑧

𝑟
 

2

 
𝑥

𝑟

 1 − 5  
𝑧

𝑟
 

2

 
𝑦

𝑟

 3 − 5  
𝑧

𝑟
 

2

 
𝑧

𝑟 

 
 
 

=  −
3

2
𝐽2𝜇𝑟𝑒𝑞

2  

𝑥𝑔5 − 5𝑥𝑧2𝑔7

𝑦𝑔5 − 5𝑦𝑧2𝑔7

3𝑧𝑔5 − 5𝑧3𝑔7

  

 

(16) 

where, req is equatorial radius of earth.   

To add the J2 perturbation to the higher order time derivatives of the position, the higher order 

time derivatives of the perturbation acceleration is calculated. For simplicity, when calculating 

the higher order time derivatives of the perturbed acceleration, 1 constant and 10 new variables 

are defined as, 

𝐵𝑎  =  𝑥𝑔5 𝐵𝑏  = 𝑦𝑔5 𝐵𝑐 = 𝑧𝑔5

𝐵𝑑  =  𝑧𝑔7 𝐵𝑒  =  𝑥𝑧 𝐵𝑓  =  𝑦𝑧

𝐵𝑔  =  𝑧𝑧   𝐵ℎ  =  𝐵𝑒  𝐵𝑑  𝐵𝑖 =  𝐵𝑓  𝐵𝑑  

𝐵𝑗 =  𝐵𝑔  𝐵𝑑  𝐶𝐽2
=  −

3

2
𝐽2𝜇𝑟𝑒𝑞

2

 

 

(17) 
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Now, the higher order time derivatives of the newly defined variables are given by, 

 

𝐵𝑎
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑥 𝑚 𝑔5
 𝑛−𝑚 𝐵𝑏

 𝑛 =    
𝑛
𝑚

 

𝑛

𝑚=0

𝑦 𝑚 𝑔5
 𝑛−𝑚 

𝐵𝑐
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑧 𝑚 𝑔5
 𝑛−𝑚 𝐵𝑑

 𝑛 =    
𝑛
𝑚

 

𝑛

𝑚=0

𝑧 𝑚 𝑔7
 𝑛−𝑚 

𝐵𝑒
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑥 𝑚 𝑧 𝑛−𝑚 𝐵𝑓
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑦 𝑚 𝑧 𝑛−𝑚 

𝐵𝑔
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑧 𝑚 𝑧 𝑛−𝑚 𝐵ℎ
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝐵𝑒
 𝑚 𝐵𝑑

 𝑛−𝑚 

𝐵𝑖
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝐵𝑓
 𝑚 𝐵𝑑

 𝑛−𝑚 𝐵𝑗
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝐵𝑔
 𝑚 𝐵𝑑

 𝑛−𝑚 

 

 

(18) 

Finally, using the higher order time derivatives of the newly defined variables, the higher or-

der time derivatives of the J2 perturbation acceleration is computed as, 

 
𝑎𝐽2

(𝑛)
=  𝑟𝐽2

(𝑛+2)
=  𝐶𝐽2

 

𝐵𝑎
 𝑛 − 5𝐵ℎ

 𝑛 

𝐵𝑏
 𝑛 − 5𝐵𝑖

 𝑛 

3𝐵𝑐
 𝑛 − 5𝐵𝑗

 𝑛 

  
  (19) 

 where, rJ2 and rJ2
(1) are position and velocity perturbation and equal to zero. 

In order to derive the STM with J2 perturbation, the newly computed derivations are added to 

the previous work as shown in the algorithm in Table 2. 

Table 2. Algorithm for the Perturbed STM Computation using Analytic Continuation Method 

Initialize r(t0), r(1)(t0), dT 

𝑎𝐽2  =  −
3

2
𝐽2  

𝜇

𝑟2
  

𝑟𝑒𝑞

𝑟
 

2

 

 
 
 

 1 − 5  
𝑧

𝑟
 

2

 
𝑥

𝑟

 1 − 5  
𝑧

𝑟
 

2

 
𝑦

𝑟

 3 − 5  
𝑧

𝑟
 

2

 
𝑧

𝑟 

 
 
 

 ; 

 

𝐶𝐽2
=  −

3

2
𝐽2𝜇𝑟𝑒𝑞

2  ; 

 

for k = 1 to imax, where imax is the total time step   

𝒓 2 =  −𝜇
𝒓

 𝒓. 𝒓 3 2 
; 

 

𝑓 = 𝒓. 𝒓 ; 
 

𝑓 1 = 2𝒓. 𝒓 1  ; 
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𝑓 2 = 2𝒓 1 . 𝒓 1 + 2𝒓. 𝒓 2  ; 
 

𝑔3 =  𝑓− 
3
2 ; 

 

𝑔3
(1)

=   −
3

2
 𝑓 1 𝑔3

𝑓
 ; 

 

𝑔3
(2)

=   −
1

𝑓
  

3

2
𝑓 1 𝑔3

(1)
+ 

3

2
𝑓 2 𝑔3 + 𝑓 1 𝑔3

(1)
  ; 

 

𝑔5 =  𝑓− 
5
2 ; 

 

𝑔5
(1)

=   −
5

2
 𝑓 1 𝑔5

𝑓
 ; 

 

𝑔5
(2)

=   −
1

𝑓
  

5

2
𝑓 1 𝑔5

(1)
+ 

5

2
𝑓 2 𝑔5 + 𝑓 1 𝑔5

(1)
  ; 

 

𝑔7 =  𝑓− 
7
2 ; 

 

𝑔7
(1)

=   −
7

2
 𝑓 1 𝑔7

𝑓
 ; 

 

𝑔7
(2)

=   −
1

𝑓
  

7

2
𝑓 1 𝑔7

(1)
+ 

7

2
𝑓 2 𝑔7 + 𝑓 1 𝑔7

(1)
  ; 

 

 

𝐵𝑎  =  𝑥𝑔5 ; 𝐵𝑎
(1)

=  𝑥𝑔5
(1)

+  𝑥(1)𝑔5 ; 𝐵𝑎
(2)

=  𝑥𝑔5
(2)

+  2𝑥(1)𝑔5
(1)

+  𝑥(2)𝑔5 ;

𝐵𝑏  = 𝑦𝑔5 ; 𝐵𝑏
(1)

=  𝑦𝑔5
(1)

+  𝑦(1)𝑔5 ; 𝐵𝑏
(2)

=  𝑦𝑔5
(2)

+  2𝑦(1)𝑔5
(1)

+ 𝑦(2)𝑔5 ;

𝐵𝑐 = 𝑧𝑔5 ; 𝐵𝑐
(1)

=  𝑧𝑔5
(1)

+  𝑧(1)𝑔5 ; 𝐵𝑐
(2)

=  𝑧𝑔5
(2)

+  2𝑧(1)𝑔5
(1)

+ 𝑧(2)𝑔5 ;

𝐵𝑑  =  𝑧𝑔7 ; 𝐵𝑑
(1)

=  𝑧𝑔7
(1)

+  𝑧(1)𝑔7 ; 𝐵𝑑
(2)

=  𝑧𝑔7
(2)

+  2𝑧(1)𝑔7
(1)

+ 𝑧(2)𝑔7 ;

 𝐵𝑒  =  𝑥𝑧 ;  𝐵𝑒
(1)

=  𝑥𝑧(1)  + 𝑥(1)𝑧 ; 𝐵𝑒
(2)

=  𝑥𝑧(2)  +  2𝑥(1)𝑧(1) + 𝑥(2)𝑧 ;

𝐵𝑓  =  𝑦𝑧 ; 𝐵𝑓
(1)

=  𝑦𝑧(1)  +  𝑦(1)𝑧 ; 𝐵𝑓
(2)

=  𝑦𝑧(2)  +  2𝑦(1)𝑧(1) +  𝑦(2)𝑧 ;

𝐵𝑔  =  𝑧𝑧 ; 𝐵𝑔
(1)

=  𝑧𝑧(1)  +  𝑧(1)𝑧 ; 𝐵𝑔
(2)

=  𝑧𝑧(2)  +  2𝑧(1)𝑧(1) +  𝑧(2)𝑧 ;

𝐵ℎ  =  𝐵𝑒  𝐵𝑑  ; 𝐵ℎ
(1)

=  𝐵𝑒𝐵𝑑
(1)

+  𝐵𝑒
(1)

𝐵𝑑  ; 𝐵ℎ
(2)

=  𝐵𝑒𝐵𝑑
(2)

+  2𝐵𝑒
(1)

𝐵𝑑
(1)

 + 𝐵𝑒
(2)

𝐵𝑑  ;

𝐵𝑖  =  𝐵𝑓  𝐵𝑑   ; 𝐵𝑖
(1)

=  𝐵𝑓𝐵𝑑
(1)

+  𝐵𝑓
(1)

𝐵𝑑  ; 𝐵𝑖
(2)

=  𝐵𝑓𝐵𝑑
(2)

+  2𝐵𝑓
(1)

𝐵𝑑
(1)

 +  𝐵𝑓
(2)

𝐵𝑑  ;

𝐵𝑗 =  𝐵𝑔 𝐵𝑑   ; 𝐵𝑗
(1)

=  𝐵𝑔𝐵𝑑
(1)

+  𝐵𝑔
(1)

𝐵𝑑  ; 𝐵𝑗
(2)

=  𝐵𝑔𝐵𝑑
(2)

+  2𝐵𝑔
(1)

𝐵𝑑
(1)

 + 𝐵𝑔
(2)

𝐵𝑑  ;

𝑟𝐽2

(2)
=  𝐶𝐽2

 

𝐵𝑎  − 5𝐵ℎ  

𝐵𝑏  − 5𝐵𝑖  

3𝐵𝑐  − 5𝐵𝑗  

  ; 𝑟𝐽2

(3)
=  𝐶𝐽2

 
 
 
 𝐵𝑎

(1)
− 5𝐵ℎ

(1)

𝐵𝑏
(1)

− 5𝐵𝑖
(1)

3𝐵𝑐
(1)

− 5𝐵𝑗
(1)

 
 
 
 

 ; 𝑟𝐽2

(4)
=  𝐶𝐽2

 
 
 
 𝐵𝑎

(2)
− 5𝐵ℎ

(2)

𝐵𝑏
(2)

− 5𝐵𝑖
(2)

3𝐵𝑐
(2)

− 5𝐵𝑗
(2)

 
 
 
 

 ;
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for n = 1 to N, where N is the total number of derivatives 

𝒓 𝑛+2 =  −𝜇   
𝑛
𝑚

 

𝑛

𝑚=0

𝒓 𝑚 𝑔3
 𝑛−𝑚 

; 

 

𝑓 𝑛 =    
𝑛
𝑚

 

𝑛

𝑚=0

𝒓 𝑚 . 𝒓 𝑛−𝑚 ; 

 

𝑔3
(𝑛+1)

=  −
1

𝑓
 
3

2
𝑓 1 𝑔3

 𝑛 
+   

𝑛
𝑚

 

𝑛

𝑚=1

 
3

2
𝑓 𝑚+1 𝑔3

 𝑛−𝑚 
+ 𝑓 𝑚 𝑔3

 𝑛−𝑚+1 
   ; 

 

𝑔5
(𝑛+1)

=  −
1

𝑓
 
5

2
𝑓 1 𝑔5

 𝑛 
+   

𝑛
𝑚

 

𝑛

𝑚=1

 
5

2
𝑓 𝑚+1 𝑔5

 𝑛−𝑚 
+ 𝑓 𝑚 𝑔5

 𝑛−𝑚+1 
   ; 

 

𝑔7
(𝑛+1)

=  −
1

𝑓
 
7

2
𝑓 1 𝑔7

 𝑛 
+   

𝑛
𝑚

 

𝑛

𝑚=1

 
7

2
𝑓 𝑚+1 𝑔7

 𝑛−𝑚 
+ 𝑓 𝑚 𝑔7

 𝑛−𝑚+1 
   ; 

 

𝐵𝑎
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑥 𝑚 𝑔5
 𝑛−𝑚  ; 𝐵𝑏

 𝑛 =    
𝑛
𝑚

 

𝑛

𝑚=0

𝑦 𝑚 𝑔5
 𝑛−𝑚  ;

𝐵𝑐
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑧 𝑚 𝑔5
 𝑛−𝑚  ; 𝐵𝑑

 𝑛 =    
𝑛
𝑚

 

𝑛

𝑚=0

𝑧 𝑚 𝑔7
 𝑛−𝑚  ;

𝐵𝑒
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑥 𝑚 𝑧 𝑛−𝑚  ; 𝐵𝑓
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑦 𝑚 𝑧 𝑛−𝑚  ;

𝐵𝑔
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝑧 𝑚 𝑧 𝑛−𝑚  ; 𝐵ℎ
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝐵𝑒
 𝑚 𝐵𝑑

 𝑛−𝑚  ;

𝐵𝑖
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝐵𝑓
 𝑚 𝐵𝑑

 𝑛−𝑚  ; 𝐵𝑗
 𝑛 =    

𝑛
𝑚

 

𝑛

𝑚=0

𝐵𝑔
 𝑚 𝐵𝑑

 𝑛−𝑚  ;

 

 

𝑟𝐽2

(𝑛+2)
=  𝐶𝐽2

 

𝐵𝑎
 𝑛 − 5𝐵ℎ

 𝑛 

𝐵𝑏
 𝑛 − 5𝐵𝑖

 𝑛 

3𝐵𝑐
 𝑛 − 5𝐵𝑗

 𝑛 

 ; 

 

end for 

𝒓 𝑡 + 𝑑𝑇 = 𝒓 𝑡 +   𝒓(𝑚) 𝑡 

𝑛

𝑚=1

𝑑𝑇(𝑚)

𝑚!
 ; 

 

𝒓(1) 𝑡 + 𝑑𝑇 = 𝒓(1) 𝑡 +   𝒓(𝑚) 𝑡 

𝑛

𝑚=2

𝑑𝑇(𝑚−1)

 𝑚 − 1 !
 ; 

 

𝜕𝒓

𝜕𝒓
= 𝑰3×3 ; 

 

𝜕𝒓

𝜕𝒓 1 
= 𝟎3×3 ; 

 

𝜕𝒓 1 

𝜕𝒓
= 𝟎3×3 ; 
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𝜕𝒓 1 

𝜕𝒓 1 
= 𝑰3×3 ; 

 

 

for n = 1 to N 

𝜕𝒓(𝑛+2)

𝜕𝒓
=  𝜇  3   

𝑛

𝑚
 

𝑛

𝑚=0

𝑔5
(𝑚)

𝑭(𝑛−𝑚) − 𝐼𝑔3
(𝑛)

 ; 

 

𝜕𝒓(𝑛+3)

𝜕𝒓(1)
 =  

𝜕𝒓(𝑛+2)

𝜕𝒓
;   

 

end for 

ф11 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓 𝑡 + 𝑑𝑇 

𝜕𝒓 𝑡 
=

𝜕𝒓

𝜕𝒓
+  

𝜕𝒓(𝑚)

𝜕𝒓

𝑑𝑇(𝑚)

𝑚!

𝑛

𝑚=1

 ; 

 

ф12 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓 𝑡 + 𝑑𝑇 

𝜕𝒓 𝑡 (1)
=

𝜕𝒓

𝜕𝒓(1)
+  

𝜕𝒓(𝑚)

𝜕𝒓(1)

𝑑𝑇(𝑚)

𝑚!

𝑛

𝑚=1

; 

 

ф21 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓 𝑡 + 𝑑𝑇 (1)

𝜕𝒓 𝑡 
=

𝜕𝒓(1)

𝜕𝒓
+  

𝜕𝒓(𝑚)

𝜕𝒓

𝑑𝑇(𝑚−1)

(𝑚 − 1)!

𝑛

𝑚=2

; 

 

ф22 𝑡 + 𝑑𝑇, 𝑡 =
𝜕𝒓 𝑡 + 𝑑𝑇 (1)

𝜕𝒓 𝑡 (1)
=

𝜕𝒓(1)

𝜕𝒓(1)
+  

𝜕𝒓(𝑚)

𝜕𝒓(1)

𝑑𝑇(𝑚−1)

(𝑚 − 1)!

𝑛

𝑚=2

; 

 

end for 

NUMERICAL RESULTS 

In this section numerical results are presented for the STM derived via the Analytical Contin-

uation technique for 4 orbits as shown in Table 3. First, the new approach is utilized to compute 

the STM for the unperturbed orbits and compared versus the closed-form solution by Battin.12 

Finally, J2 perturbation is added and the STM is computed and compared versus ODE45 in terms 

of accuracy. All codes are written and compiled using MATLAB R2016b.  

Table 3. Orbits Used for Numerical Simulation 

Orbit Type a, m e f, deg i, deg ω, deg Ω, deg tp, s 

LEO 7.3090×106 0.1 0 60 30 45 6.2187×103 

MEO 1.0964×107 0.4 0 60 30 45 1.1424×104 

GTO 2.6352×107 0.6 0 60 30 45 4.2574×104 

HEO 2.6999×107 0.7 0 60 30 45 4.4152×104 
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To compare the numerical results, three different methods are used; calculation of RMS error, 

energy conservation and the symplectic check.  

The RMS Error of each element of the STM in the time domain of 10 orbit period is computed 

from difference between the elements of the unperturbed STMs computed using Battin’s method12 

and the Analytic Continuation technique as shown in Eq. (20). 

𝐸𝑖𝑗 =     𝑀𝑖𝑗𝑘 − 𝐿𝑖𝑗𝑘  
2

𝑛

𝑘=1

𝑛   (20) 

where, Mijk and Lijk are the (i,j)th terms of the STMs at kth time period from Battin’s method12 

and Analytic Continuation method respectively, Eij is the RMS Error of the (i,j)th term of the 

STMs and n is the total number of STMs (time-steps). 

The total energy is computed at each time step over 10 orbit periods, using Eq. (21) and com-

pared against the initial total energy. The total energy check is computed as the normalized dif-

ference as shown in Eq. (22).  

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦(𝑖) =  
1

2
𝒓(𝑖)

(1)𝑇
𝒓(𝑖)

(1)
−

µ

𝑟 𝑖 
+ 

1

2
𝐽2

µ

𝑟 𝑖 
 

𝑟𝑒𝑞

𝑟 𝑖 
 

2

 3  
𝑧(𝑖)

𝑟 𝑖 
 

2

− 1    
(21) 

 

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶ℎ𝑒𝑐𝑘 =    
𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦(𝑖) − 𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦
  

 
(22) 

where, Total Energy is the total energy at the initial conditions and Total Energy(i) is the total en-

ergy at the ith time step. 

Finally, the symplectic nature of the perturbed STMs is examined and elements of error matrix 

are plotted. The matrix [Ф] is called symplectic, if it satisfies Eq. (23) 6 

 ф 𝑻 𝐽  ф =   𝐽  
 

(23) 

where, [Ф] is the STM and [J] is a skew-symmetric matrix defined by Eq. (24) 

 𝐽 =   
03×3 𝐼3×3

−𝐼3×3 03×3
  

 (24) 

The error in the symplectic nature of the STMs are calculated by Eq. (25) 15 

 𝐸𝑠𝑦𝑚 . =   ф 𝑻 𝐽  ф −  𝐽  
 

(25) 

where, [Esym.] is the symplectic error matrix.  

The STMs are calculated in every 25s for 10 orbit periods for the unperturbed cases using An-

alytic Continuation method and the simplified F & G solution for the State Transition Matrices by 

Battin.7 The RMS error for the 36 elements of the STMs are calculated using Eq. (20) for the four 

orbit test cases and the results are shown in Table 4 to Table 7. 
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 Table 4. RMS Error of the Elements of The Unperturbed STM of LEO Orbit 

3.9241×10-8 1.7154×10-8 1.5946×10-8 2.4383×10-5 2.4725×10-5 2.6308×10-5 

1.7835×10-8 4.1506×10-8 1.6939×10-8 2.4725×10-5 2.4312×10-5 2.6993×10-5 

1.5464×10-8 1.7660×10-8 4.3214×10-8 2.6309×10-5 2.6993×10-5 2.9202×10-5 

6.3071×10-9 2.7438×10-9 2.5737×10-9 3.9189×10-6 3.9742×10-6 4.2288×10-6 

2.8805×10-9 6.6710×10-9 2.7087×10-9 3.9741×10-6 3.9078×10-6 4.3389×10-6 

2.4768×10-9 2.8535×10-9 6.9455×10-9 4.2288×10-6 4.3390×10-6 4.6945×10-6 

  

Table 5. RMS Error of the Elements of The Unperturbed STM of MEO Orbit 

1.9383×10-8 1.0136×10-8 5.7495×10-9 1.5192×10-5 1.6535×10-5 1.4957×10-5 

1.0633×10-8 2.5392×10-8 9.9908×10-9 1.6534×10-5 1.4897×10-5 1.7753×10-5 

5.8882×10-9 1.0568×10-8 2.0691×10-8 1.4957×10-5 1.7754×10-5 1.7968×10-5 

3.0528×10-9 1.5868×10-9 9.0400×10-10 2.3916×10-6 2.6043×10-6 2.3560×10-6 

1.6846×10-9 3.9993×10-9 1.5624×10-9 2.6041×10-6 2.3464×10-6 2.7965×10-6 

9.3131×10-10 1.6761×10-9 3.2588×10-9 2.3560×10-6 2.7968×10-6 2.8318×10-6 

 

  

Table 6. RMS Error of the Elements of The Unperturbed STM of GTO Orbit 

7.0046×10-10 3.8750×10-10 1.8786×10-10 1.2381×10-6 1.3800×10-6 1.1720×10-6 

3.9740×10-10 9.7111×10-10 3.8274×10-10 1.3800×10-6 1.2054×10-6 1.4728×10-6 

1.9365×10-10 3.9440×10-10 7.4003×10-10 1.1720×10-6 1.4728×10-6 1.4524×10-6 

1.1187×10-10 6.1689×10-11 2.9899×10-11 1.9768×10-7 2.2039×10-7 1.8718×10-7 

6.3666×10-11 1.5509×10-10 6.0894×10-11 2.2039×10-7 1.9250×10-7 2.3523×10-7 

3.1056×10-11 6.3224×10-11 1.1819×10-10 1.8718×10-7 2.3523×10-7 2.3203×10-7 

Ф11 

Ф21 Ф22 

Ф12 

Ф11 

Ф21 Ф22 

Ф12 

Ф11 

Ф21 Ф22 

Ф12 



 13 

 

 Table 7. RMS Error of the Elements of The Unperturbed STM of HEO Orbit 

3.9272×10-9 3.3222×10-9 3.7799×10-9 3.2060×10-6 3.6034×10-6 2.9952×10-6 

3.3398×10-9 5.2082×10-9 4.3880×10-9 3.6033×10-6 3.1158×10-6 3.8422×10-6 

3.8014×10-9 4.4274×10-9 4.5320×10-9 2.9953×10-6 3.8424×10-6 3.7539×10-6 

4.4549×10-10 3.4376×10-10 3.0760×10-10 5.1348×10-7 5.7761×10-7 4.7995×10-7 

3.5027×10-10 6.6446×10-10 3.9868×10-10 5.7758×10-7 4.9928×10-7 6.1567×10-7 

3.1292×10-10 4.0895×10-10 5.3866×10-10 4.7995×10-7 6.1571×10-7 6.0197×10-7 

 

As shown, there is a loss of computation accuracy in the right half of the STM; however, we 

believe that improving the series expansion by adaptive time-steps and expansion order will im-

prove the performance across all elements of the STM. 

Next, for the J2 perturbed cases, the results of the 10 orbit periods of the Total Energy Check 

and the elements of the [Esym.] matrix of every step using Analytic Continuation method are com-

pared with the results using ODE45. The results of the four different orbits are plotted against 

every time step and are shown in Figure.1 to Figure.8. 

 

Ф11 

Ф21 Ф22 

Ф12 
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Figure 1(a). Analytic Continuation method  Figure 1(b). ODE45 method 

Figure 1. Total Energy Check vs Time for the LEO Orbit with J2 Perturbation 

 

  

Figure 2(a). Analytic Continuation method  Figure 2(b). ODE45 method 

Figure 2. Symplectic Check vs Time for the STMs of the LEO Orbit with J2 Perturbation 
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Figure 3(a). Analytic Continuation method 
 

Figure 3(b). ODE45 method 

Figure 3. Total Energy Check vs Time for the MEO Orbit with J2 Perturbation 

  

 

  

 

 

 

 

 

 

 

Figure 4(a). Analytic Continuation method 
 

Figure 4(b). ODE45 method 

Figure 4. Symplectic Check vs Time for the STMs of the MEO Orbit with J2 Perturbation 
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Figure 5(a). Analytic Continuation method  Figure 5(b). ODE45 method 

Figure 5. Total Energy Check vs Time for the GTO Orbit with J2 Perturbation 

 

 

 

Figure 6(a). Analytic Continuation method 
 

Figure 6(b). ODE45 method 

Figure 6. Symplectic Check vs Time for the STMs of the GTO Orbit with J2 Perturbation 

 



 17 

  

  

 

 

 

 

 

 

 

 

Figure 7(a). Analytic Continuation method 
 

Figure 7(b). ODE45 method 

Figure 7. Total Energy Check vs Time for the HEO Orbit with J2 Perturbation 

 

 

 

Figure 8(a). Analytic Continuation method 
 

Figure 8(b). ODE45 method 

Figure 8. Symplectic Check vs Time for the STMs of the HEO Orbit with J2 Perturbation 
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DISCUSSION 

 As shown from the results, the Analytic Continuation method is providing more accurate re-

sults for the perturbed orbit propagation problem across all test orbits. For computing the STMs 

the new method provides a bounded behavior for the error propagation that is not observed in 

conventional numerical integration. This phenomenon is currently under further study. Addition-

ally, it is noted that the new approach provided an order of magnitude improvement in accuracy 

over ODE45 for the GTO and HEO cases; whereas, for the LEO and MEO cases, ODE45 STM is 

more accurate. However, the accumulation of errors in ODE45 is observed as the number of or-

bits increases whereas the analytic continuation computed STM error is bounded. 

Several additional improvements are currently being explored for the analytic continuation 

method that includes adaptive time-step and order of expansion. Additionally, the techniques of 

automatic differentiation are being utilized to improve the efficiency of the present code. These 

topics will be explored and presented in future works. 

CONCLUSION 

In this paper, the State Transition Matrix of the perturbed two body problem is derived using 

higher order Analytic Continuation technique. The derivation is verified by the simulation results 

of four different types of orbits; LEO, MEO, GTO and HEO, for 10 orbit periods and compared 

with the simulation results using ODE45. From the comparison it is shown that, the Total Energy 

Check is at least one digit more accurate than ODE45. In ODE45, the error in the Total Energy 

Check gradually increases with more revolutions. 

The symplectic check of the perturbed STMs using the Analytic Continuation technique 

shows very interesting characteristics. The plots of the symplectic check show that the errors in 

Analytic Continuation STM is always bounded in a specific region irrespective of the number of 

revolutions, whereas the errors in the STMs using ODE45 start increasing with more revolutions. 

Finally, for the HEO orbit, the STMs using the Analytic Continuation method are at least one dig-

it more accurate than the STMs using ODE45. 

Though the present work shows only J2 perturbation terms, this method can be easily extended 

to add J3 – J6 perturbation terms as well as the full spherical harmonics gravity model. Additional-

ly, the method lends itself to readily handle third-body perturbations. Atmospheric drag model 

can also be included with this work. The aforementioned perturbations are to explore as future 

extensions of this work. This newly derived method has no singularity and valid for any eccen-

tricity and any type of orbit. 
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APPENDIX 

The expression for the first six partials of the STM power series are shown here to highlight 

the recursive relationships shown in Eq. (A1) to Eq. (A10). 
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