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Abstract
We present the results of a comprehensive study in which the precision and efficiency
of six numerical integration techniques, both implicit and explicit, are compared for
solving the gravitationally perturbed two-body problem in astrodynamics. Solution
of the perturbed two-body problem is fundamental for applications in space situa-
tional awareness, such as tracking orbit debris and maintaining a catalogue of over
twenty thousand pieces of orbit debris greater than the size of a softball, as well as
for prediction and prevention of future satellite collisions. The integrators used in the
study are a 5th/4th and 8th/7th order Dormand-Prince, an 8th order Gauss-Jackson,
a 12th/10th order Runga-Kutta-Nystrom, Variable-step Gauss Legendre Propagator
and the Adaptive-Picard-Chebyshev methods. Four orbit test cases are considered,
low Earth orbit, Sun-synchronous orbit, geosynchronous orbit, and aMolniya orbit. A
set of tests are done using a high fidelity spherical-harmonic gravity (70× 70) model
with and without an exponential cannonball drag model. We present three metrics for
quantifying the solution precision achieved by each integration method. These are
conservation of the Hamiltonian for conservative systems, round-trip-closure, and the
method of manufactured solutions. The efficiency of each integrator is determined by
the number of function evaluations required for convergence to a solution with a pre-
scribed accuracy. The present results show the region of applicability of the selected
methods as well as their associated computational cost. Comparison results are con-
cisely presented in several figures and are intended to provide the reader with useful
information for selecting the best integrator for their purposes and problem specific
requirements in astrodynamics.
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Introduction

The perturbed two-body problem is a fundamental problem in celestial mechan-
ics that can only be solved through the use of numerical integration methods.
Historically, the numerical integrators that have been considered for solving this
problem can be categorized as either single-step methods or multi-step methods.
For single-step methods, the state at a specific time x(tk) is used to compute the
state at some future time x(tk + h) through a linear combination of weighted eval-
uations of the ordinary differential equation at intermediate times tk≤t≤tk + h.
The method is considered “single-step” because only information from the current
state is used to compute the state at a future time x(tk + h). Multi-step meth-
ods differ in that the state at some future time is estimated using the current state
value as well as state values at several previous times. Multi-step methods are also
known as predictor-corrector methods because the value of the state at some future
time is extrapolated from previous states in a forward estimation step (predictor
step) and this is then refined in a backwards estimation step (corrector step), [24].
Implicit methods have also been considered for solution of the perturbed two-body
problem. These methods approximate the differential equation function along the
trajectory using orthogonal basis functions, such as Chebyshev or Legendre poly-
nomials, and iterate the “path approximation” for large segments around the orbit,
[4, 6, 29].

The family of explicit Runge-Kutta methods are an example of single-step meth-
ods. This family is generally further classified by considering two parameters. The
first is the number of “stages”, which refers to the number of function evaluations
required at each time step, and the second is the order p, which refers to the local
truncation error at each step h and matches a local Taylor series expansion with an
error of O(h)p+1, [13]. Butcher developed a classification of Runge-Kutta methods,
known as the Butcher Tableau, where the methods were arranged based on the num-
ber of stages and their order, [11, 12]. Some simple explicit methods use fixed time
steps where the forward prediction time interval is always the same, however more
advanced methods make use of lower and higher order algorithms so that the differ-
ence in the state predicted by the two algorithms can be used to adaptively adjust the
time step. The 5th/4th order Dormand-Prince (DP5(4)), the 8th/7th order Dormand-
Prince (DP8(7)) and the 12th/10th order Runge-Kutta-Nystrom (RKN(12)10) are
examples of adaptive step-size methods where the step-size control leads to essen-
tially uniform errors for the duration over which integration is performed. DP5(4)
combines a fifth and fourth order explicit Runga-Kutta method and requires seven
stages whereas the DP8(7) combines an eighth and seventh order explicit Runge-
Kutta method and requires 13 stages, [15, 16]. RKN(12)10 combines a twelfth and
tenth order polynomial and operates directly on the second order system of differ-
ential equations (double integrator method), whereas the Dormand-Prince methods
typically require decomposition of the system into a set of first order differential
equations, [14]. Adaptive step-size control is very useful when the local complexity
of the ordinary differential equation varies and smaller or larger steps are required
to meet the desired accuracy as well as maximize efficiency. The explicit Runge-
Kutta methods require an initial guess for the step-size in order to start the adaptive
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algorithm, and several algorithms exist to aid in the selection of the starting step-size
for general ordinary differential equations, [21, 40].

Multi-step, or predictor-corrector methods, use the current state and a set of back-
points (previous state values) to predict the state at some future time. The predicted
state is then added to the set of backpoints and a separate corrector algorithm is used
to refine the approximation of the future state. The prediction and correction phases
of the algorithm are performed by linearly combining forward, backward and cen-
tral differences of the ordinary differential equation evaluated at the set of backpoints
until the refined estimate at some future state meets an error criterion. The 8th order
Gauss-Jackson (GJ8) is an example of a predictor-corrector method that has histor-
ically been the state-of-the-practice for solution of the perturbed two-body problem
in celestial mechanics, [31]. In general, predictor-corrector methods use fixed step-
size, however Berry presented a second-order Stormer-Cowell method with variable
step-size and internal error control, [7]. A severe limitation of the predictor-corrector
methods is that the initial set of backpoints must be computed using a “startup proce-
dure” and this can be computationally expensive, especially if a restart is frequently
required during the orbit propagation. For highly elliptic orbits, such as a Molniya
orbit, the algorithm must either use restarts or a fixed time interval everywhere that
is small enough to produce a solution that meets the user specified tolerance at
perigee where the dynamics are the most nonlinear. An alternative may be to refor-
mulate the differential equations using the Sundman transformation such that the
independent variable step is true/eccentric anomaly instead of time, [8]. Typically,
an iterative startup procedure is implemented whereby the backpoints are determined
via a semi-analytic approximation or a lower order numerical method, [10].

Collocation, Picard-Chebyshev and Implicit-Runge-Kutta (IRK) methods all fall
under the umbrella of implicit methods. IRK methods require the solution of a set of
coupled nonlinear differential equations and need an initial guess of the intermediate
state values in order for the algorithm to start, [26, 42]. Collocation is a numerical
method that makes use of a set of basis functions, usually orthogonal, to approx-
imate state values subject to known boundary conditions under the constraint that
the derivative of the approximation exactly satisfies the ordinary differential equa-
tion at a set of prior determined sample points, [17–19, 39]. Compared to explicit
Runge-Kutta (ERK) methods, IRK methods can achieve the same order of accu-
racy with a fewer number of stages. Van Der Houwen et al. [38], investigated high
order IRK methods with step size control. They showed that 10th order IRK is more
efficient than DP8(7). Jones, [27], introduced a scheme that uses Gauss-Legendre
(GL) collocation for first order systems, dubbed as VGL-s. In terms of function calls
and execution time, VGL-s outperforms DP8(7), especially when high accuracy is
required [1, 27]. Picard-Chebyshev methods solves the differential equations in inte-
gral form where the integrand is approximated with Chebyshev polynomials and
the integration is performed iteratively using Picard iteration. In general, the com-
putational cost in serial mode is greater for implicit methods than explicit methods,
however implicit methods are parallelizable and can also be made more efficient
through the use of local force approximations that are not possible with explicit
integrators. In particular, the recently developed Adaptive-Picard-Chebyshev (APC)
algorithm makes use of local force approximations and achieves better efficiency,
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Table 1 Numerical Integrators

Method Type Explicit/ Single/ Adaptation Stepping Ref.

Implicit Double

DP5(4) Single-step Explicit Single Adaptive Time [15]

DP8(7) Single-step Explicit Single Adaptive Time [16]

RKN12(10) Single-step Explicit Double Adaptive Time [14]

VGL-s Single-step Implicit Single Adaptive Time [27]

GJ8 Multi-step Explicit Double Unadaptive Time [10]

APC Path Approx. Implicit Double Adaptive True-Anomaly [41]

without loss of accuracy, compared with explicit methods for solution of the per-
turbed two-body problem, [28, 41]. Unlike explicit methods, implicit methods are
inherently parallelizable. Thus, they can benefit from advanced computer architec-
tures and parallel formulation to meet future computational demands, [32]. Parallel
implementations of implicit methods show over an order of magnitude speedup
compared with serial implementations [2, 23, 35].

In this paper we present the results of a comprehensive study in which the preci-
sion and efficiency of six numerical integration techniques, both implicit and explicit,
are compared for solving the gravitationally perturbed two-body problem in astro-
dynamics. As shown in Table 1, the integrators used in the comparison are the
single-step DP(5)4, DP(8)7, RKN(12)10, VGL-s methods, the multistep GJ8 method
and the path approximation APC method. The VGL-s and APC are implicit inte-
grators whereas, the others are explicit methods. Some other characteristics are also
shown in the table, such as single/double methods and whether or not the method
is adaptive. Double integration methods, such RKN12(10), can evaluate the position
from the acceleration directly; whereas single integration methods require reformu-
lating an n second-order system of equations into a system of 2n first-order equations.
For implicit methods, double integration decreases the number of iterations by a fac-
tor of two. Adaptive integrators select the step size to achieve a prescribed accuracy.
Finally, the stepping is highlighted in either time or true-anomaly as shown in Fig. 1.

(a) Equal time segments (b) Fixed true anomaly segments

Fig. 1 Schematic of moderately eccentric orbit divided into segments of even length in time and true
anomaly, [3]
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The four orbit test cases considered are, low Earth orbit (LEO), Sun-synchronous
orbit (SSO), geosynchronous orbit (GEO) and a Molniya orbit (HEO). A set of
tests are done using a high fidelity spherical-harmonic gravity 70 × 70 model with
and without an exponential cannonball drag model. Three metrics are used for
quantifying the solution precision achieved by each integration method. These are
conservation of the Hamiltonian for conservative systems (no drag cases), round-trip-
closure (RTC), and the method of manufactured solutions (MMS). Computational
efficiency is determined by the number of function evaluations required for con-
vergence to a solution with a prescribed tolerance. In “Integrator Overview” the
selected numerical integration methods are explained and discussed. In “Integrator
Error Metrics” the rationale and the development of the error evaluation techniques
are presented. In “Integrator Comparison” we introduce the numerical comparison
results and discuss the findings. Finally, in “Conclusion”, we summarize our findings
and draw conclusions.

Integrator Overview

In Cowell’s formulation, the relative orbit dynamics for the perturbed two-body
problem in an Earth-Centered inertial coordinate system is given by

r̈ = − μ

r3
r + ap, (1)

where r is the geocentric position vector, r = √
rTr, μ is the Earth’s gravitational

mass constant and ap is the acceleration due to perturbations. For the two-body prop-
agation, ap = 0. Letting r = [x, y, z]T , Eq. 1 represents a system of three second
order ordinary differential equations (ODEs) that could be expressed in a general
form as

r̈ = f (t, r, v), f (t, r, v) ∈ R
3, (2)

with initial conditions r(t0) = r0 and v(t0) = v0. Alternatively, Eq. 2 could also be
reduced to a system of first order ODEs whose general form is

ẋ = f (t, x) , f (t, x) ∈ R
6, (3)

with the initial conditions x(t0) = x0, where

x = [r; v]. (4)

Equations 3 and 2 are initial value problems (IVPs) of first and second order systems,
respectively. General and special perturbations techniques are used to address the
orbit problem. General perturbations techniques are analytic and involve the series
expansion of the perturbing accelerations. They are generally low fidelity. How-
ever, their reliance on average dynamics produces physical insight into the secular,
short-period, and long-period variations. Moreover, the individual contributions of
gravitational and nongravitational forces could be eliminated and studied, [32]. Spe-
cial perturbations, also known as numerical integration, require numerical integration
of the equations of motion including all necessary perturbing accelerations, [37].
Therefore, they provide accurate solutions, especially for short-period variations.
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Equation 3 may be arranged in the forward integration form as

xk+1 = xk +
∫ tk+h

tk

f (t, x(t)) dt, (5)

where xk is the state vector at a given time tk and xk+1 is the state vector at a later time
tk+1 with timestep h. The difference between numerical integration methods is the
way to approximate the integral term. Runge-Kutta methods approximate the integral
term as a combination of a number of weighted evaluations of the ODE function
at intermediate stages within the timestep whereas multistep methods approximate
the integrand using Newton polynomials1 exploiting the evaluations at a number of
backpoints.

Alternatively, Eq. 3 can also be arranged into the path integration form as

x(t) = x(t0) +
∫

c

f (t, x(t)) dt, (6)

where x(t) is the state path vector at a given time t . Picard-Chebyshev methods
approximate the differential function along the trajectory using Chebyshev basis
functions and iterate the “path approximation” for large segments as opposed to small
timesteps.

5th and 8th order Dormand-Prince

Runge-Kutta methods approximate the integral term in Eq. 5 as a weighted lin-
ear combination of the ODE evaluations. The solution of a differential equation via
explicit Runge-Kutta methods is given by

xk+1 = xk + hψf (tk, xk, h), (7)

where ψf (tk, xk, h) is the increment function for the ODE function f , at time tk and
states xk , within a time step h. It is evaluated according to

ψf (tk, xk, h) =
s∑

i=1

biFi , (8)

where s is the number of stages and Fi represents the ODE evaluation at stage i, and
has the form

F1 = f (tk, xk),

Fi = f (tk + cih, xk + h

s∑
j=1

aijFj ); (i = 2, ...s). (9)

For a particular Runge-Kutta method with s number of stages, the coefficients bi (for
i = 1, 2, ..., s), aij (for 1 � j < i � s ) and ci (for i = 1, 2, ..., s) can be arranged in
the Butcher Tableau as in Table 2.

1Given a set of n + 1 data points (x0, y0), . . . , (xn, yn), the Newton interpolating polynomial is written as
N(x) = [y0] + [y0, y1](x − x0) + · · · + [y0, . . . , yn](x − x0)(x − x1) · · · (x − xn−1), and [y0, . . . , yn]
denotes divided differences, e.g. [y0, y1] = y1−y0

x1−x0
.
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Table 2 Butcher Tableau for Explicit Runge-Kutta methods

c1

c2 a21

c3 a31 a32

...
...

...
. . .

cs as,1 as,2 . . . as,s−1

b1 b2 . . . bs−1 bs

Local truncation error represents the terms neglected by truncating the Taylor
series. The accuracy of a Runge-Kutta method order (p) is comparable to that of a
pth order Taylor polynomial. Its error is defined by

e(h) = |x(tk+1) − x(tk) − hψf (tk, x(tk), h)| � C.hp+1, (10)

where C is a constant independent of h and x(tk) and x(tk+1) are the exact solution
at steps k and k + 1, respectively.

Adaptive Methods

The purpose of adaptive stepsize methods is to achieve some predetermined accuracy
in the solution with minimum computational effort, [34]. To fulfill this purpose, each
step of integration should contribute uniformly to the total integration error, [31]. The
adaptive methods are designed to control the stepsize using an estimate of the local
truncation error of a single integration step. A common technique of stepsize control
is the error estimate available with embedded methods.

Embedded methods produce two independent approximations

xk+1 = xk + h

s∑
j=1

biFj ,

x̂k+1 = xk + h

s∑
j=1

b̂iFj , (11)

of orders p and p + 1, respectively. The local truncation error is approximated as
the difference between the two approximations. For a certain step size h, the error
estimate is

e(h) ≈ |x̂k+1 − xk+1|/|xk+1|. (12)

As the error e(h) is proportional to hp+1, the error presented for the next step h∗ is

e(h∗) = e(h)

(
h∗

h

)p+1

. (13)
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The predicted error on the next step should be smaller than a tolerance tol so the
maximum allowable stepsize for the next step is

h∗ =
(

tol

e(h)

) 1
p+1

h. (14)

The new stepsize could also be used for the current step if the error is larger than the
allowable tolerance. In practical implementation, we can reformulate Eq. 14 as [34]

h∗ = hβ min

(
maxScale,max(minScale),

(
tol

e

) 1
p+1

)
, (15)

where β < 1 is a safety factor that decreases the probability of rejection of the
next timestep. The values maxScale and minScale limit the step size increase and
decrease. The current state-of-the-practice algorithms are DP5(4) and DP8(7), [15,
16].

12th/10th order Runga-Kutta

The motion of satellites is described by a system of second-order differential equa-
tions as is the dynamics of all natural dynamical systems. Instead of transforming
second-order systems to first-order systems, Nystrom developed a second-order
formulation of Runge-Kutta methods, [33]. For Runge-Kutta-Nystrom (RKN) meth-
ods, both the position and velocity are calculated directly from the acceleration
as

rk+1 = rk + hvk + h2
s∑

i=1

b̄iGi ,

vk+1 = vk + h

s∑
i=1

biGi , (16)

with,

G1 = g(tk, rk, vk),

Gi = g(tk + cih, rk + cihvk + h2
i−1∑
j=1

āijGj , vk + h

i−1∑
j=1

aijGj ); (i = 2, ...s),(17)

and coefficients

āij =
s∑

k=1

aikakj , b̄i =
s∑

j=1

bjaij . (18)

The adaptive RKN methods were first introduced by Fehlberg, [20]. The current
state-of-the-practice RKN method is RKN12(10) which was developed by Dormand
et al., [14].
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Implicit Runge-Kutta Method

For Implicit Runge-Kutta (IRK) methods, the integral term in Eq. 5 is approximated
as a combination of nonlinear coupled evaluations of the ODE. The s-stage implicit
Runge-Kutta dubbed as the Variable-step Gauss Legendre method (VGL-s) is given
in [27] as,

xk+1 = xk + h

s∑
i=1

biFi , (19)

where

Fi = f (tk + cih, xk + h

s∑
j=1

aijFj ); (j = 1, ..., s). (20)

The upper limit of the summation to evaluate the function is the number of stages, s.
Compared with Eq. 9, where the upper limit to evaluate the function at stage i is i−1,
IRK has both current and future states in the algebraic expression. The coefficients
for IRK schemes are obtained via collocation methods, such as Gauss-Legendre.

As shown above, implicit Runge-Kutta transforms the differential equations into
a system of algebraic equations for the internal stages that are solved using Newton’s
method. However, using Newton’s method in orbit propagation is very costly as it
needs the calculation of the Jacobian. To avoid Jacobian evaluation, the fixed-point
iteration is used instead.

Variable-step implicit Runge-Kutta methods use the rate of convergence for the
iterative process to approximate the local truncation error. This concept was sug-
gested by Van Der Houwen, [38]. VGL-s follows the variable-step implementation
as described in “Adaptive Methods”. The difference is the approximation of the local
truncation error equation. It is defined for first order systems as

e(h) ≈ |y(m)
n+1 − y(m−1)

n+1 |
y(m−1)
n+1

. (21)

If convergence is not achieved within the maximum number of iterations M , the step
size is rejected and the final value of e is used to generate a new step size.

It has to be noted that, the variable step size scheme explained in the original VGL-
s algorithm, [27], did not produce the best results in our tests especially for the HEO
orbit. In those cases, uniform distribution in the true anomaly was adopted to produce
results that are representative of the method’s computational accuracy and efficiency.

8th Order Gauss-JacksonMethod

Gauss-Jackson is a summed double predictor-corrector multistep method. It first
appeared in the 1924 paper by Jackson, [25] where he clearly stated that the method
was known to Gauss beforehand. The U.S. space surveillance centers have used
an eighth-order Gauss-Jackson algorithm since the 1960s. As a double integration
method, GJ8 obtains the position directly from the acceleration. Therefore, it is
combined with the summed Adams method to propagate the velocity.
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The GJ8 method approximates the integrand using Newton’s polynomial of order
m − 1, that interpolates m points

(tk−m+1,Gk−m+1), ..., (tk,Gk).

The predicted position and velocity are given by

rk+1 = h2
m+1∑
j=0

δj∇j−2Gk,

vk+1 = h

m∑
j=0

γj∇j−1Gk, (22)

and they are corrected via

rk+1 = h2
m+1∑
j=0

δ∗∇j−2Gk+1,

vk+1 = h

m∑
j=0

γ ∗
j ∇j−1Gk+1. (23)

The backward differences of Gn are recursively defined by

∇0Gk = Gk,

∇Gk = Gk − Gk−1,

∇kGk = ∇m−1Gk − ∇m−1Gk−1. (24)

The evaluation of both r and v requires the evaluation of the first and second sums,
∇−1 and ∇−2. They are evaluated recursively as

∇−1Gk = ∇−1Gk−1 + Gk,

∇−2Gk = ∇−2Gk−1 + ∇−1Gk . (25)

The initial values of first and second sums are calculated using

∇−1G0 = v0
h

−
m∑

j=1

γ ∗∇j−1G0,

∇−2G0 = r0
h2

−
m+1∑
j=1

δ∗∇j−2G0. (26)
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These coefficients could be obtained recursively from

γj = 1 −
j−1∑
k=0

1

j + 1 − k
γk,

γ ∗
j = −

j−1∑
k=0

1

j + 1 − k
γ ∗
k ,

δj = (1 − j)γ ∗
j ,

δ∗
j = δj − δj−1, (27)

with γ0 = γ ∗
0 = δ0 = δ∗

0 = 1.
Berry and Healy, [10], presented the PE(CE)n algorithm for the Gauss-Jackson

method, where n is the number of iterations used. This could be a fixed number or
the number of iterations required to achieve a certain level of accuracy within each
integration step.

Adaptive-Picard-Chebyshev

Picard-Chebyshev iteration is an implicit method where long trajectory arcs of the
differential equation function are approximated using Chebyshev polynomials. The
approximation is then integrated via Picard iteration to update the trajectory arcs until
convergence is achieved, [4, 5].

Consider the following second order ordinary differential equation

d2r(t)
dt2

= f(t, r(t), v(t)), t ∈ [t0, tf ], r ∈ Rn×1, v∈ Rn×1, f ∈ Rn×1,

(28)
with initial conditions r(t0) = r0 and v(t0) = v0. This can be rearranged to obtain the
corresponding integral equation for velocity:

v(τ ) = v(−1) +
∫ s

−1
f (q, r(q), v(q))dq. (29)

A sequence of approximate solutions vi (t), (i = 1, 2, 3..., ∞), of the true solution
v(t) that satisfies this integral equation may be obtained through Picard iteration
using the following set of approximate paths:

vi (τ ) = v(−1) +
∫ s

−1
f (q, ri−1(q), vi−1(q))dq. (30)

Picard proved that for smooth, differentiable, single-valued nonlinear functions
f (t, r(t), v(t)), there is a time interval

∣∣tf − t0
∣∣ < δ and a starting trajectory v0(t)

satisfying
∥∥v0(t) − v(t)

∥∥∞ < �, that for suitable finite bounds (δ, �), the Picard
sequence of trajectories represents a contraction operator that converges to the unique
solution of the initial value problem.

The velocity on the left hand side of Eq. 29 can also be written in terms of a
Chebyshev series where β represents the the velocity coefficients and a represents the
coefficients of the acceleration that are computed through least squares. p = tf −t0

2
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is a scale factor that transforms time to a new independent variable τ that exists on
the domain from [−1, 1]. Note that the upper limit on the summation for the least
squares coefficients is N −2 for this second order system. For first order systems the
upper limit of the summation is N − 1.

vi (τ ) =
N−1∑
k=0

βi
kTk(s) = v(−1) + p

∫ s

−1

N−2∑
k=0

ai−1
k Tk(q)dq, (31)

The position coefficients (α) are computed directly from the velocity coefficients (β)

as follows:

ri (τ ) =
N∑

k=0

αi
kTk(τ ) = r(−1) + p

∫ τ

−1

N−1∑
k=0

β i
kTk(s)ds. (32)

Junkins and Woollands, [28, 41], provide a full derivation of APC as well as an
explanation of the adaptive segmentation scheme, the accelerated error feedback
(quasilinearization), and the radially adaptive and variable fidelity gravity models,
[29].

Integrator Error Metrics

In this section we present three methods for quantifying the accuracy of a numerical
integration method. These are conservation of the Hamiltonian, round-trip-closure
(RTC), and method of manufactured solutions (MMS). There are advantages and dis-
advantages to each method, neither is the perfect way to measure integrator error.
Additionally, there exists other qualified methods, e.g. step-size halving, [7, 9]. How-
ever, studying the performance of each integration method using these three error
metrics provides valuable insight that can aid in answering the question:Which inte-
grator should be used to solve a given problem, considering some application specific
accuracy and efficiency requirements?

Conservation of the Hamiltonian

The conservative nature of the the Earth’s potential acceleration means that the total
energy of an object in orbit must be constant for all time. Computing the variation
in the Hamiltonian at various locations along the propagated trajectory can be used
as a metric to quantify the precision of the numerical integration method. The main
drawback of this method is that it can only be used for conservative systems (no
atmospheric drag), and the Hamiltonian is also blind to in-track errors. This is most
pronounced for circular orbits, and we have found that the Hamiltonian check is
usually an order of magnitude more optimistic than reality because all points along a
circular orbit obviously have the same constant Hamiltonian.
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For an Earth-Centered-Earth-Fixed (ECEF) system2 the Hamiltonian (H ) is
calculated as

H = 1

2
vECEF .vECEF − 1

2
ω2(r2xECEF + r2yECEF ) + U(rECEF ) (33)

where rECEF and vECEF are the position and velocity vectors in the rotating frame,
U is the Earth’s gravitational potential field and ω is the earth angular velocity. The
precision (ε) is computed as

ε = − log

(
max(|Hk − H0|)

H0

)
, k = 1, .., Ns, (34)

whereNs is the number integration steps (or number of nodes for implicit integrators)
and H0 and Hk are the Hamiltonian at the initial time and time k, respectively.

Round-Trip-Closure

RTC is an integrator error metric that measures the accumulative error which results
during numerical integration. Consider the nonlinear differential equation, with
specified initial conditions:

ẋ(t) = f (t, x(t)), x(t0) = x0, tf ≤ t ≤ t0. (35)

Suppose that the differential equation of Eq. 35 does not have an analytical solution.
An approximate solution may be obtained through numerical integration. As a spe-
cific example, consider propagating the trajectory of a spacecraft about the Earth,
with specified initial conditions and final time.

Having computed the trajectory, the final position is used as the new initial
position, and the final time as the new initial time, as shown in Eq. 36.

ẋ(t) = f (t, x(t)), x(t0) = x(tf ) = xf , tf ≥ t ≥ t0. (36)

The new initial conditions are propagated backwards in time along the trajectory
in order to recover the initial conditions used for the forward integration. Note that
for the orbit problem the Earth is rotated backwards in time. The state {rf (t0), vf (t0)}
is the final state at time t0 on the backward integration from time tf . The error metric
is evaluated as follows:

J = 1

2

((∣∣r0(t0) − rf (t0)
∣∣

|r0|

)
+

(∣∣v0(t0) − vf (t0)
∣∣

|v0|

))
. (37)

For Implicit methods (APC and VGL-s), slightly varying the node locations (increas-
ing the number of nodes is recommended) along the reverse trajectory allows the
solution to be computed using different points in the gravity field, thus eliminating
possible bias and/or aliasing issues that may arise due to performing the reverse cal-
culations at the exact same node locations as the forward solution. Berry et al. [9],
mention this as being a disadvantage when testing step integrators in a perturbed

2Generally, the gravitational potential is defined in ECEF coordinate system wherein the Earth rotation is
accounted for.
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environment. They comment that it does not measure any reversible integration error
as it will be canceled on the reverse trip when the sign of the step changes. How-
ever, the RTCmethod has been used extensively for performing numerical integration
accuracy checks, [22]. A high fidelity numerical integrator should recover the ini-
tial conditions with an accuracy of 14 significant figures, however, this will begin
to decrease with long-term propagation and is a good measure of the achievable
long-term propagation range of a numerical integrator.

One subtlety we have noticed is that each numerical integrator, when applied to a
particular differential equation has small RTC errors that are quasi-periodic along the
trajectory, and even though the amplitude may be small, drawing a “tight” accuracy
conclusion is difficult in the presence of these oscillations. Comparing the forward
and reverse integrations with each other to form a relative state error permits us to
infer the amplitude and frequency content of these relative errors. This in turn sug-
gests that a small ensemble of final states associated with the final times spanning the
typically small period of the domain error oscillation should be used. The maximum
error associated with the worst RTC closure error has been found to be a conservative
estimate of the solution accuracy.

Method of Manufactured Solutions

MMS, [30, 43–45], computes, or manufactures, an analytical function near the actual
problem of interest. A new system of differential equations, that is slightly different
from the original problem, is constructed and solved. The solution to this system has
an analytical solution, which when compared to the numerical solution allows the
numerical accuracy of the integrator to be measured.

Consider the nonlinear differential equation, with specified initial conditions:

ẋ(t) = f (t, x(t)), x(t0) = x0, t0 ≤ t ≤ tf . (38)

Suppose that the differential equation of Eq. 38 does not have an analytical solution.
Furthermore, suppose that an approximate solution xr (t) is available that does not
satisfy Eq. 38 exactly but is believed to satisfy it with “small” but unknown errors.
Suppose that xr (t) is smooth and at least once differentiable. In some methods, xr (t)

is directly available as an algebraic linear combination of differentiable basis func-
tions, in other step-by-step methods, a finite sequence of states at known times must
be interpolated to produce xr (t). On substituting xr (t) into Eq. 38, we can obtain an
explicit algebraic solution for the error as

dr (t) = ẋr (t) − f (t, xr (t)) (39)

or

ẋr (t) = f (t, xr (t)) + dr (t). (40)

We can compute the norm of dr (t) to see if it is sufficiently small to consider a good
starting approximation. As a rule of thumb for orbit problems, if double precision
accuracy is sought for the state trajectory, then at least single precision accuracy is
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desired for xr (t), and we would typically require ‖dr (t)||/||f (t, xr (t))‖ to be smaller
than 10−7. Frequently, we find when testing high fidelity methods that our starting
solution is more accurate with much smaller dr (t). Comparing Eqs. 38 and 40 and
reflecting for a moment, it is clear that xr (t) is the exact analytical solution of the
slightly disturbed differential equation

ẋ(t) = f (t, x(t)) + dr (t), x(t0) = x0, t0 ≤ t ≤ tf . (41)

Since we have a candidate solution with a small ‖dr (t)‖, Eq. 41 can be considered
a very close neighboring problem to the original one of Eq. 38, but with the impor-
tant advantage that we know the exact analytical solution xr (t). One can argue that
whatever numerical method is under evaluation for solving Eq. 38, can be evaluated
on the perturbed system of Eq. 41, which should prove slightly more difficult for the
numerical solver than solving the original unforced system of Eq. 38. Any numerical
integration process of interest can be used to solve the perturbed system of Eq. 41 and
obtain an approximate solution x̃(t), however we know the exact solution of Eq. 41
is xr (t), so we can compute the exact solution error e(t) = x̃(t) − xr (t) of this per-
turbed problem at any/all times. If the numerical method of interest in Eq. 38 gives,
for example, a 15 digit solution for the more difficult perturbed problem of Eq. 41,
then we can be justifiably optimistic that it will solve Eq. 38 with similar precision. In
particular, if ‖dr (t)‖‖f (t,xr (t))‖ < ε, say 10−7, then our experience indicates that the numeri-
cal method used (with the same tuning used to generate x̃(t)), when applied to Eq. 38,
will always (at least in extensive tests with various initial states for several nonlinear
systems that have known analytical solutions) produce a solution with 14 significant
figures.

Traditionally, the main weakness with the MMS test is that the acceleration, ẍr (t),
is obtained by differentiating an approximation to the converged velocity solution.
The quality of the approximation limits the ability of MMS to test the quality of
the integrator. This is a drawback for the step-by-step integrators, but for APC the
coefficients of the acceleration fit are already available due to the path approxima-
tion nature of the algorithm, so no differentiation of the velocity approximation is
required. To avoid differentiation of the velocity approximation for the step-by-step
integrators, in this paper we pre-compute a reference trajectory (and correspond-
ing coefficients) using APC. During the MMS iterations the step-by-step integrators
interpolate the reference trajectory (position, velocity, acceleration) at every time step
in order to generate MMS acceleration. Thus no differentiation of the state trajectory
approximation of the velocity is necessary and MMS can be used to honestly test the
accuracy of the integrators without the necessity of introducing other approximations.

Integrator Comparison

In this section we discuss the results of the integrator comparison for both con-
servative and non-conservative systems using the four example test cases: LEO,
SSO, GEO and Molniya (HEO). Table 3 outline their orbital elements. The meth-
ods for determining the integrator accuracy are conservation of the Hamiltonian,
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Table 3 Study satellites

Category Semimajor
Axis
(km)

Eccentricity Inclination
(degree)

Right Ascension of
Ascending Node
(degree)

Argument of
Perigee (deg)

True
Anomaly
(degree)

LEO 6745.592 0.01 7.81 100.21 152.83 0.0

SSO 7153.12 0.0 98.4469 212.741 0.0 0.0

GEO 42,164.0 0.001 0.0 0.0 0.0 0.0

HEO 26,164 .74 63.4 0.0 0.0 0.0

round-trip-closure and method of manufactured solutions. The spherical harmonics
gravity model is given by, [36]:

V (r, φ, λ) = μ

r

[
1 +

∞∑
n=2

n∑
m=0

(
Req

r

)n

Pnmsinφ (Cnm cos(mλ) + Snm sin(mλ))

]
, (42)
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where {r, φ, λ} are the spherical coordinates of the satellite with r describing the
distance, λ the longitude , φ the latitude, the functions Pnm(x) are the associated Leg-
endre polynomials, Cnm and Snm are constants determined from experimental data
following Earth Gravitational Model 2008 (EGM 2008). The inertial acceleration can
then be obtained from the gradient of the potential given in Eq. 42 as,

a = ∇V = ∂V

∂r
∇r + ∂V

∂φ
∇φ + ∂V

∂λ
∇λ (43)

The perturbing acceleration due to the cannonball drag model is given by, [37]:

a = −βρ|vrel |vrel, (44)

where, the relative velocity, vrel = v−ωωω×r,ωωω is Earth’s angular velocity, the density,
ρ = ρ0 exp [(h − h0)/H ], h is the height above Earth’s surface, h0 is a reference
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height, H is the scale height, and β is the ballistic coefficient, β = CdA/m, where
Cd is the drag coefficient, A is the drag area and m is the mass of the satellite.

Conservative Cases: no Atmospheric Drag

Figure 2 shows the Hamiltonian results for the four test cases where the propagation
was done with a 70 × 70 degree and order spherical harmonic gravity model over
12 hours. In all cases, APC exhibits the best performance, that is the least number of
function evaluations required to achieve a specified accuracy. Not surprisingly, the
low order integrator, DP5(4), struggles to produce trajectories that are accurate to 12
digits. GJ8 performs reasonably well except for the highly eccentric HEO case where
the fixed step-size leads to many unnecessary function evaluations over apogee where
the gravity gradients are the least nonlinear. The high order integrators (DP8(7),
RKN12(10), APC) are able to achieve solutions that are accurate to 12-14 digits for
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Fig. 4 Work-precision diagram for RTC with spherical harmonic gravity perturbations (70 × 70 degree
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all the test cases. VGL-s performed very similarly to DP8(7) for the GEO and HEO
cases. For the 72 hours propagation, Fig. 3, the number of function calls increased
by an order of magnitude across all methods. APC, RKN12(10) and GJ8 had similar
performance in the LEO, SSO and GEO cases. GJ8, as in the 12 hours test, struggled
in the HEO case. Overall, APC maintained higher efficiency across all cases. VGL-s
and DP8(7) had very similar results in GEO and HEO; however, in the LEO and the
SSO cases DP8(7) outperformed VGL-s. The low order integrator, DP5(4), produced
even less accurate solutions. This is not surprising as round-off and truncation errors
accumulate over a longer propagation time.

Figure 4 shows the RTC results for the four test cases where the propagation was
done considering a 70 × 70 degree and order spherical harmonic gravity model over
12 hours. As with the Hamiltonian, the higher order integrators performed the best.
The most notable difference is that for the LEO and HEO cases the integrators do
not achieve the 14 digit accuracy that was portrayed in Fig. 2 with the Hamiltonian
error metric. For the 72 hours propagation shown in Fig. 5 the trends are similar
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to the 12 hours propagation case, however it is clear that the absolute achievable
accuracy is reduced by at least an order of magnitude. This is again consistent with
the fact that numerical error accumulates during the orbit propagation and highlights
the optimistic nature of the Hamiltonian error metric.

Figure 6 shows the MMS results for the four test cases where the propaga-
tion was done considering a 70 × 70 degree and order spherical harmonic gravity
model over 12 hours. As with the Hamiltonian and RTC tests, the higher order
integrators show better performance. We see that for all test cases the achiev-
able accuracy is considerably less than that demonstrated by the Hamiltonian and
RTC performance metrics for all integrators. For the 72 hours propagation, Fig. 7,
similar trends are evident but with an overall reduction in the final achievable
tolerance.

It is important to note that neither of these tests is perfect and one should evaluate
the performance of an integrator by taking into account the results from all three
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Fig. 7 Work-precision diagram for MMS with spherical harmonic gravity perturbations (70 × 70 degree
and order) propagated over 72 hours

tests. One obvious conclusion is that APC performs better than the other integrators
for almost all the test case orbits.

Nonconservative Cases: Exponential DragModel

In this section we include the exponential atmospheric drag model, Eq. 44, along
with the 70 × 70 degree and order spherical harmonic gravity model in the orbit
propagation. We assume that the drag coefficient is Cd = 2.2, the surface area is
A = 1 m2 and the mass of the spacecraft is m = 25 kg. Note that conservation
of the Hamiltonian is only valid for conservative systems, and thus only the RTC
and MMS error metrics are used for examining the integrator accuracy for these
non-conservative test cases. Also, the RKN(12)10 algorithm, in its original form, is
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Fig. 8 Work-precision diagram for RTC, with spherical harmonic gravity perturbations (70 × 70 degree
and order) and an exponential drag model, propagated over 12 hours

limited to integrating second order systems that are a function of position only. The
drag force model is velocity dependent and thus the combined force model (drag plus
gravity) is a function of both position and velocity, thus preventing RKN(12)10 from
being used in the comparison.3

Figures 8 and 9 show the RTC results for the four test case orbits for 12 and
72 hours, respectively. For the LEO, SSO and GEO test cases, APC and GJ8 out-
performed the other methods for both propagation times. In the HEO 12 hours
propagation, VGL-s and DP8(7) performed better than GJ8; however, for the 72

3RKN(12)10 was not tested with drag due to software limitations.



The Journal of the Astronautical Sciences

4 6 8 10 12 14
RTC Accuracy in Digits

0

2

4

6

8

10

12
F

un
ct

io
n 

C
al

ls
104

   DP5(4)
   DP8(7)
    VGL-S
      GJ8
      APC

4 6 8 10 12 14
RTC Accuracy in Digits

0

2

4

6

8

10

12

F
un

ct
io

n 
C

al
ls

104

   DP5(4)
   DP8(7)
    VGL-S
      GJ8
      APC

4 6 8 10 12 14
RTC Accuracy in Digits

0

500

1000

1500

F
un

ct
io

n 
C

al
ls

   DP5(4)
   DP8(7)
    VGL-S
      GJ8
      APC

4 6 8 10 12 14
RTC Accuracy in Digits

0

5000

10000

15000
F

un
ct

io
n 

C
al

ls
   DP5(4)
   DP8(7)
    VGL-S
      GJ8
      APC

(a) LEO Satellite (b) SSO Satellite

(c) GEO Satellite (d) HEO Satellite

Fig. 9 Work-precision diagram for RTC, with spherical harmonic gravity perturbations (70 × 70 degree
and order) and an exponential drag model, propagated over 72 hours

hours case APC outperformed all methods by approximately an oder of magnitude
infunction calls for 10 digits of accuracy. In particular, the RTC results demonstrate
that the integrators perform at least two orders of magnitude worse then they did for
the no-drag simulations. This is an important point for consideration when making
an integrator selection.

Figures 10 and 11 show the MMS results for the four test case for 12 and 72 hours,
respectively. APC generally outperforms the other methods. When compared to RTC
all methods produced similar results. However, GJ8 produced much worse results in
the MMS test when compared to RTC. This is due to the propagation of back-points
that affected the MMS results. For the 72 hours propagation, and except for APC in
the GEO case, the achievable accuracy was reduced by an order of magnitude as a
result of the longer intergation period.
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Fig. 10 Work-precision diagram for MMS, with spherical harmonic gravity perturbations (70×70 degree
and order) and an exponential drag model, propagated over 12 hours

The RTC errors depend on the numerical integrators and dynamical system under
consideration: there is no known way to reduce the errors, beyond step size selection
and similar integrator tuning, unless the integrators themselves are modified. Our
testing shows that the space-time spectral content of the acceleration experienced
along the particular trajectory interplays with the particular integrator to produce
errors that oscillate in a difficult to predict manner. Perhaps, one positive feature of
the RTC method is that it reveals these error oscillations, but heretofore, there has
not been a method for dealing with these oscillations. Our recommended approach
is to compute an ensemble of RTC errors, that flow an ensemble of final states at
final times beyond the declared final time of the forward integration (and spanning
the longest period evident in the oscillations observed in trial integrations), and then
use the largest norm of the resulting ensemble of round trip closure errors as the
conservative RTC measure of convergence.
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Fig. 11 Work-precision diagram for MMS, with spherical harmonic gravity perturbations (70×70 degree
and order) and an exponential drag model, propagated over 72 hours

Conclusion

In this paper we present the results of a comprehensive study in which the precision
and efficiency of six numerical integration techniques, both implicit and explicit, are
compared for solving the perturbed two-body problem in astrodynamics. The inte-
grators used in the study are 5th/4th and 8th/7th order Dormand-Prince, 8th order
Gauss-Jackson, 12th/10th order Runga-Kutta-Nystrom, Variable-step Gauss Legen-
dre integrator, and the Adaptive-Picard-Chebyshev methods. Four orbit test cases
were considered, low Earth orbit, Sun-synchronous orbit, geosynchronous orbit and
a Molniya orbit. A set of tests were done using a high fidelity spherical-harmonic
gravity (70× 70) model with and without an exponential cannonball drag model. We
present three metrics for quantifying the solution precision achieved by each inte-
gration method. These are round-trip-closure (RTC), the method of manufactured
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solutions (MMS), and conservation of the Hamiltonian for conservative systems. The
efficiency of each integrator is determined by the number of function evaluations
required for convergence to a solution. We found that the higher order integrator,
Adaptive Picard-Chebyshev, outperformed the lower order integrators with regard to
both accuracy and efficiency for all the orbit test cases, except for the LEO cases,
where it is competitive with several other excellent algorithms, especially Gauss-
Jackson 8th order and RKN12(10). The 72 hour integrations, for MMS and all 4 test
orbits showed the Adaptive Picard-Chebyshev method to be very stable and the most
efficient for a given accuracy. We also confirmed that the Hamiltonian frequently
gives an overly optimistic accuracy measure compared with round-trip-closure and
the method of manufactured solutions. Based on the shown results, we highly rec-
ommend the use of all three error metrics when validating a new algorithm or when
comparing the relative merits of several algorithms. All the results from our study
are concisely presented in several figures that are intended to provide the reader
with useful information for selecting integrators for their purposes and to illustrate a
systematic way to evaluate integrators in astrodynamics.
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