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ABSTRACT 
Although generic object detection models exist, it is important to 
train mobile robots to detect and recognize specific objects that 
are unique to an environment. Transfer learning can be used to 
reduce the number of new images required to learn the new object 
instances by leveraging more general existing models. This paper 
describes our user interface for collecting custom image datasets 
with a quadcopter and performing object instance labeling and 
annotation semi-autonomously. Collecting images with marked 
objects is a time-consuming process and usually done under heavy 
human supervision. We evaluated our dataset by detecting the 
annotated objects in the real-time quadcopter video feed. 
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1. INTRODUCTION 
Convolutional neural networks have achieved outstanding 
performance on object detection methods but depend on the 
existence of large datasets with millions of annotated images [1]. 
However, image dataset construction remains a time-consuming 
task that requires substantial effort even with the availability of 
helpful tools. Our work addresses the problem of collecting and 
annotating a dataset of object images using a quadcopter. We 
demonstrate that we can use the collected images to create 
customized object detectors for important landmarks in our indoor 
environment. The quadcopter serves a dual purpose: not only is it 
used during the image collection process but also it can utilize the 
customized object detectors. 

Customized object detectors can be trained with fewer images 
using transfer learning. Transferring image representations 
reduces the time and data needed for training, because the models 
leverage features learned from the original dataset. It is possible to 
fine tune or transfer a pre-trained model and still obtain satisfying 
detection results without the need to relearn the entire network. 
For instance, Oquab et al. addressed this problem in object and 
action classification using a transfer learning model trained on 
different datasets [2]. 

However, dataset construction and annotation require major 
manual effort even with the availability of helpful tools. Our aim 
is to automate this process and reduce the need for human 
monitoring. For this project we developed a sketch based user 
interface system to guide the quadcopter. The user simply 
sketches a bounding box around the object of interest, and the 
quadcopter collects images semi-autonomously with minimal 
guidance from the human. To add variance to the dataset while 
reducing the flight time, we added image filtering capabilities to 
the user interface to augment the dataset with additional synthetic 
images with changes to brightness, contrast, zooming, and 
rotation. For transfer learning, we selected a state of the art object 
detection model: the SSD [3] MobileNet [4] architecture for 
compute constrained devices (built on VGG-16 [5]). 

2. RELATED WORK 
The availability of large image datasets has yielded dramatic 
improvements in image classification. Important datasets include: 
CIFAR-10 with 6000 examples of 10 classes, CIFAR100 with 600 
examples of 100 non-overlapping classes [6], the Lotus Hill [7] 
dataset with 50,000 images, and ImageNet [8] with almost 15 
million high-resolution images in 22,000 categories. In ImageNet, 
the images are collected from the web and labeled using 
Amazon’s Mechanical Turk [1]. However these datasets typically 
lack bounding boxes localizing the object instances, and the ones 
that contain bounding boxes are usually human-annotated. 
Examples include COCO [9] which has about 80 object categories 
with over 1.5 million object instances, and PascalVOC [10] with 
20 classes and 27,450 annotated objects. 

Some tools have been created to help researchers label images 
into segments. LabelMe [11] is a web-based tool that allows easy 
image annotation and instant sharing. One collection strategy is to 
gather natural samples from the Internet using query patterns to 
generate the desired image dataset [12]. It is also possible to 
analyze the image and its text-annotation in order to select a 
ground-figure segmentation and to use this information to classify 
segments into visual categories [13]. 
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The COCO challenge [9] was created to advance the state of the 
art in object recognition by making it advantageous to combine 
object recognition with scene understanding. For precise object 
localization, COCO objects are labeled using per-instance 
segmentations; the dataset contains photos of 91 objects with 
crowdsourced annotations labeled using a novel user interface for 
category detection [2]. Our research improves on existing tools by 
using a quadcopter for image collection and adding functions to 
the flight interface to synthetically augment the dataset. 

3. METHOD 
In this section, we describe the procedure used to collect our 
customizable annotated-object image dataset. Our experiments 
were performed on the commercially available Parrot Augmented 
Reality (AR) Drone Version 2. This drone has two cameras: one 
front-mounted HD camera and a downward facing QVGA 
camera. For our experiments, we extended an early version of our 
user interface described in [14]; a video demo of the original 
system can be viewed at: https://youtu.be/ErA2111xjzMl. 

3.1 Dataset Construction 
First the human manually flies the quadcopter to the object of 
interest and then sketches a circle around the object to initialize 
the four coordinates of the bounding box (x min, y min  x max , y 
max). The selection should only include a single object to match 
the original training COCO dataset (see Figure 1 A).  

The bounding box is sent to our system to initialize autonomous 
navigation. An object tracker is used to calculate the bounding 
box in subsequent frames which are saved to the image dataset.  

Sometimes, due to the network delay, undesired annotations may 
occur that need to be eliminated from the dataset before the 

learning process. The system collects one candidate image each 
second to allow enough time for the filtering operation to be 
applied before storing the resultant frame. We believe that our 
platform can also be used to create action image datasets 
following the same procedure. 

3.2 Tracking 
For tracking, we evaluated several online trackers available within 
openCV and one hybrid tracker (combining offline and online 
tracking). Some of the trackers failed since they were not 
designed for a moving camera, and others had problems achieving 
real-time performance on a mobile computer. However, the 
adaptive correlation filter, MOSSE [15], was found to be stable 
and capable of handling the 30 frames per second generated by 
the Parrot ARDrone 2.0 camera.  

3.3 Image Filters 
Before storing the candidate sample, the annotated frames can be 
processed using image filtering operations in order to create more 
variation in the dataset. These filters are accessed directly through 
the user interface and include brightness, contrast, rotation, and 
zooming. Rotation is useful as it is not possible to hover with a tilt 
orientation while capturing high quality images, and artificially 
zooming preserves the battery life by reducing the quadcopter 
movement. Figure 1 B, C, D, E, and F show examples of images 
captured with these filters.  

3.4 Semi-autonomous Navigation 
After the initial bounding box is drawn, the quadcopter starts 
flying autonomously, and the system enters a visual dataset 
collection mode, acquiring data at a rate of 1 fps. The quadcopter  



 

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida 
 

modifies its yaw angle and altitude to track the object designated 
by the user. The x-axis error between the object centroid and 
canvas center is used to estimate the orientation angle, and the y-
axis error is used to estimate the quadcopter’s altitude. 

 

 

The errors are transmitted to a PD (proportional-derivative) 
controller with gains Kp and Kd set to 0.25. The quadcopter uses 
its inertial sensors to monitor roll Φ, pitch Θ, yaw ψ, rotational 
speed Ψ and the vertical velocity ζ; controls are issued using a 
series of ROS Twist commands u = ( Φ, Θ, ζ, Ψ) � [−1, 1]4 at a 
frequency of 100Hz. Our interface is capable of eliminating  

undesired photos by comparing the correlation percentage to a 
predefined threshold; as long as this percentage exceeds the 
specified threshold, the agent continues photographing the tracked 
object, else it stops. This scenario was inspired by ImageNet 
where the dataset contains images with a single centered object. 

3.5 Transfer Learning 
Transfer learning is beneficial because our dataset is small 
compared to the generic datasets. To reduce the time required for 
training, all the model weights are frozen except the last 
classification layer. Figure 2 shows the transfer learning process. 
During the training phase, we transfer weights trained on the SSD 
architecture which is a feed-forward convolutional network; it is 
implemented using the MobileNet model which is based on depth-
wise separable convolutions. These weights were trained on the 
COCO dataset before being frozen; the collected dataset is then 
used to train the classifier layer for the new classes. Since SSD 
uses a different aspect ratio for different scales (8x8 and 4x4), our 
system collects several frames from different locations using both 
zooming and navigation.  

 

Table 1. Object detection performance on new objects 

Constructed Dataset Prediction Results 

Class Percentage 

coffee	machine 84% 

Christmas	toy 53% 

potted	plant 81% 

tissue	box 98% 
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4. RESULTS 
For our experiments, we collected a dataset with images for four 
classes of which three are new and one already existed in the 
COCO dataset. The classes are: 1) coffee machine 2) Xmas toy 3) 
potted plant and 4) tissue box. Our image dataset contains 270 
bounding box annotated images for each class with one class per 

image. The examples always have the object located near the 
center of the frame. Our test samples consist of 640×360 frames 
gathered from the real-time video streaming of the quadcopter 
frontal camera. The transfer learning process required two days to 
reach an average total loss (Confidence Loss + α Location Loss) < 
0.9. α is a parameter reducing the location loss function by 
bringing the predictions closer to the ground truth. Our training 
configuration is batch size = 60, learning rate = 0.004 with 0.95 
decay factor. Figure 4 shows the loss functions in the graphs a, b, 
and c. 

 

The architecture is SSD MobileNet, and the object detection API 
provided by the Tensorflow community is used to detect the new 
classes. We used weights extracted from a network trained on the 
COCO dataset before the classification layer. The new classifier is 
trained on the constructed dataset. Figure 5 shows the object 
detection model after applying transfer learning on the constructed 
dataset. As shown in the left figure, the potted plant is an existing 
class, but the model can’t detect it with confidence > 50%, 
whereas the trained model is able to detect all the new classes 
after one day of transfer learning. 

In the testing phase, we evaluate our dataset annotation accuracy 
by obtained the classifier performance on predicting the class of 
the objects appearing in the test data. The classifier predictions are 
shown in Table I. Figure 3 illustrates our experiment. The 
bounding box surrounding the objects in the live stream indicates 
successful real-time object detection. 
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CONCLUSION 
This paper presents a novel approach to constructing an annotated 
object image dataset using a semi-autonomous quadcopter that 
gathers multiple viewpoints of a target object and applies image 
filters to create a synthetically augmented dataset for training 
customized object detectors using transfer learning on a CNN 
model. Our platform is capable of capturing high quality images 
of a fixed or moving object using a friendly user interface that can 
be launched from a mobile device. We demonstrate that the 
customized object detectors trained with the semi-autonomously 
constructed dataset perform well at detecting objects viewed 
through the quadcopter video feed in real time. 
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