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ABSTRACT 

Real time applications such as robotic require real time actions 

based on the immediate available data. Machine learning and 

artificial intelligence rely on high volume of training informative 

data set to propose a comprehensive and useful model for later real 

time action. Our goal in this paper is to provide a solution for robot 

grasping as a real time application without the time and memory 

consuming pertaining phase. Grasping as one of the most important 

ability of human being is defined as a suitable configuration which 

depends on the perceived information from the object. For human 

being, the best results obtain when one incorporates the vision data 

such as the extracted edges and shape from the object into grasping 

task. Nevertheless, in robotics, vision will not suite for every 

situation. Another possibility to grasping is using the object shape 

information from its vicinity. Based on these Haptic information, 

similar to human being, one can propose different approaches to 

grasping which are called grasping policies. In this work, we are 

trying to introduce a real time policy which aims at keeping contact 

with the object during movement and alignment on it. First we state 

problem by system dynamic equation incorporated by the object 

constraint surface into dynamic equation. In next step, the 

suggested policy to accomplish the task in real time based on the 

available sensor information will be presented. The effectiveness 

of proposed approach will be evaluated by demonstration results.    
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1. INTRODUCTION 
In the era of mining and interpreting data, machine learning and 

artificial intelligence have demonstrated their abilities in this 

regard. A lot of works and attempts reported in literatures 

specifically during recent years provide better insight about the 

efficacy of the mentioned fields [2]. In fact, the pursued goal behind 

all of these recent valuable researches is to present a simplified, 

comprehensive parametric or non-parametric representation for 

modeling, decoding and extracting the informative features 

underneath the provided data set. The obtained outcome will be 

utilized to predict an output corresponding to new input data [3].   

An essential assumption which highly determines the quality of 

prediction is the informativeness of data set itself. A machine 

learning algorithm always works based on previous observed and 

known data as the main source to understand the underlying 

unknown structure. Having access to more volume and a rich data 

set certainly helps the algorithm to differentiate between various of 

future unknown input data and interpolate better to provide more 

accurate results [1]. 

When it comes to the realm of real time applications more 

considerations will be required. Real time applications are always 

facing with possible new different data at each instance of the time. 

The time-dependent nature of these data gives a dynamic behavior 

to the data set. For example, an autonomous vehicle moving in 

surrounding with other vehicles, pedestrians and under traffic 

restrictions needs to react immediately according to the received 

real time data from its sensors, camera or remote information. As 

another example consider a networks of connected sensor nodes 

transferring data between themselves or a master node. Different 

routes for this purpose are available between them and selection of 

best one needs a real time analyzing process [5]-[4]-[11].  

A robot as an agent dealing with real time unknown environment 

and structure needs to adjust its behavior dynamically with such 

time and structure dependent changes. For instance, a robot aims at 

grasping an unknown object. The expected shape of real objects 

ranges from the simplest form to the most complex one. To grasp a 

target object a robot has to adapt the limb and end-effector 

configuration. The configuration depends on the object shape 

feature which is the edges of the object. For human being, the 

information of edges can be achieved by vision inspection easily. 

Recent years of research have been conducted using the same idea 

and ability by a camera in robotic [7] – [8]. Nonetheless, despite 

enhancement, vision algorithm in robotic domain still suffers from 

several weakness. High time computational and memory usage for 

a light, low specifications and remote control robot analyzing 

several other sensor information at the same time are the expense 

of advanced vision algorithm implementation [8].   

Meanwhile, another feasible option is to precept the object through 

touching and sensing the surface. This Haptic strategy has been 

addressed in several references promising to perform better under 

the explained limitations in robotics. Fortunately, new 

manufactured robot has been equipped with sensors which gives 

the contact force torque information at each instant of the time. One 

can gather such kind of information from the object as the input 

data set to feed them to machine learning algorithms for structure 

identification, classification, modeling or shape reconstruction. 

Certainly previous similar diverse circumstances learning are 

needed to deal with novel and unknown objects. Moreover, the 

trained model which can be very complex should be stored in robot 

internal memory for real time implementation [8].  
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In this paper we will propose the solution for such machine learning 

shortages by directly implementing a policy for grasping by the 

robot. In other words, the idea would be eliminating the learning 

and exploring process as the intermediate level, proposing an 

immediate policy in real time to accomplish the grasping task as the 

robot keeps touching the object. The paper will be organized as 

different sections. Section 2 describes the system dynamic behavior 

and object force torque generating model, in section 3 the unified 

real time policy will be presented. The demonstrations of work are 

provided in section 4 and section 5 summarizes the paper. 

2. SYSTEM DESCRIPTION 
In this section, the required mathematical relationship of system in 

real time and the model of interaction surface are investigated. The 

provided mathematical relationships are useful for next sections 

algorithm. 

2.1 System Real Time Dynamic Equation 
To derive a real time policy, a time-dependent model of system is 

required. Such model is so called dynamic equation in robotic 

expressing the relationship between target variables and the input 

commanded signal. The target variables are either joint velocities 𝑞̇ 

or the end-effector velocity 𝑥̇ respect to a specific frame. The end-

effector position and orientation is a twist vector of size of (6 × 1) 

denoted by 𝑥 ∈ ℝ6. The time derivative of these variables so called 

linear and angular velocity is related to joint velocities by Jacobian 

matrix 𝐽(𝑞) : 

 

𝐽(𝑞)𝑞̇ = 𝑥̇ (1) 

 

On the other hand, grasping is a kind of robot environment 

interaction. As a consequence, it is essential to evaluate the effect 

of this interaction on the robot dynamic equation. Keep in mind this 

fact, the dynamic equation of robot in joint space is described by: 

 

𝑀(𝑞)𝑞̈   +  𝐶(𝑞, 𝑞̇) + 𝑔(𝑞) = 𝜏 − 𝐽𝑇𝐹 (2) 

 

𝜏 is the joint torques vector, 𝐹 representing the interaction force-

moment between the robot end-effector and the object. The inserted 

force and moment by end-effector to object form the components 

of wrench 𝐹: 

 

𝐹 = [
𝑓𝑒
𝑚𝑒

] 
(3) 

Inertia matrix 𝑀(𝑞) which is dependent on the joint angles is a 

bounded positive definite matrix, the Centrifugal and Coriolis 

forces 𝐶𝑞̇ and 𝑔(𝑞) gravitational forces are both bounded as well. 

The skew-symmetricity is one of the most important feature of 

robot [12]. 

Depend on the number of joints, redundancy in robot kinematics is 

possible. An immediate consequence of redundancy is smaller 

dimensionality of Cartesian space than joint space. Assuming that 

𝐽(𝑞) is a full row rank matrix, further decomposition of joint 

velocity vector achieves by [12]: 

 

𝑞̇  = 𝐽+𝐽𝑞̇  + 𝐽−𝑞̇ (4) 

Where 𝐽+ = 𝐽𝑇(𝐽𝐽𝑇)−1 and 𝐽− = 𝐼 − (𝐽+𝐽).  

To have more control over the end-effector situation over time, it is 

more convenient to consider the Cartesian space dynamic equation. 

To do that, we can transform the joint space dynamic equation to 

Cartesian space by taking derivative of (1) and express the joint 

acceleration according to end-effector acceleration as follow: 

 

𝑥̈  =  𝐽𝑞̈ + 𝐽𝑞̇̇ (5) 

 

𝑞̈  =  𝐽+(𝑥̈ − 𝐽𝑞̇̇) + 𝐽−𝑞̈ (6) 

 

Replacing into (2), the final dynamic equation would be: 

 

𝑀𝐽+ 𝑥̈ + 𝑀𝐽−𝑞̈ + 𝑔 + 𝑑(𝑡) = 𝜏 − 𝐽𝑇𝐹 (7) 

 

In which the 𝑑(𝑡) = −𝑀𝐽+𝐽𝑞̇̇ + 𝐶𝑞̇  is a very small magnitude term 

and will be considered as disturbance. To create a better 

relationship between the end-effector and interacting force 

moment, following torque signal 𝜏 is presented as the first step of 

policy generation: 

 

𝜏 =  𝑀𝐽+(𝑥̈𝑑 − 𝑀𝑑
−1(𝐵𝑑(𝑥̇ − 𝑥̇𝑑) − (𝐹 − 𝐹𝑑)))  +  𝐽𝑇𝐹 (8) 

 

This torque signal simply imply the cancellation of force-moment 

effect via jacobian matrix on the joint torque and brings the desired 

force regulation inside a decoupled dynamic equation. By this way 

the force-moment effect in each direction can be handled much 

more easily.   

For grasping the target end-effector velocity variable respect to 

end-effector itself provides more freedom to manipulate and guide 

the end-effector during alignment and movement on the object. To 

achieve this goal, the acceleration signal designs base on the 

relationship between the end-effector velocity in base frame and the 

end-effector velocity in end-effector frame: 

 

𝑥̇  =  𝑅𝑒 𝑥̇𝑒 (9) 

 

𝑥̈ = 𝑅̅𝑒 𝑥̈𝑒
𝑒  +  𝑅̅𝑒

̇  𝑥̇𝑒
𝑒  (10) 

 

In which we have: 

 

𝑅̅𝑒 = [
 𝑅𝑒 Ο
Ο  𝑅𝑒

] 
(11) 

 

Now it is enough to have a choice for acceleration as: 

 

𝑎 = 𝑅̅𝑒𝑎
𝑒 + 𝑅̅𝑒 𝑥̇𝑒

𝑒 (12) 

 

Such selection simply provides: 
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𝑥̈𝑒
𝑒 = 𝑎𝑒 (13) 

 

𝑎 is the acceleration referred to the end-effector frame. 

This equation simply means that to change the system behavior at 

each instant of the time, suitable acceleration signal as a good 

policy has to be generated. The best policy obtains when we 

incorporate feedback from the action into the policy. The reason 

behind that is because any degradation from the desired policy has 

to be compensated in a closed loop manner. To reach to this goal, 

we propose following policy for acceleration:  

 

𝑎𝑒  =  𝑀𝑑
−1  (𝑣𝑑

𝑒 + 𝐵𝑑(𝑣𝑒
𝑒 − 𝑣𝑑𝑒

𝑒 ) − 𝐵𝑓(𝐹𝑒 − 𝐹𝑑𝑒)) (14) 

 

Based on this expression, the robot configuration can alter 

according to any terms in right hand side of equation. To put in to 

perspective, the result from inserting this policy into robot dynamic 

equation (7), finally one can reach to the following dynamic 

equation known as error dynamic: 

 

𝑀𝑑  (𝑣̇𝑒
𝑒 − 𝑣̇𝑑𝑒

𝑒 )  + 𝐵𝑑(𝑣𝑒 − 𝑣𝑑𝑒
𝑒 )  =  𝐵𝑓(𝐹𝑒

𝑒) (15) 

 

Because the coefficients of this dynamic error are positive, starting 

from any initial conditions for the velocity, the error signal for each 

term will be vanished over time. Using appropriate coefficients for 

𝑀𝑑, 𝐵𝑑 the rate of convergence to zero can be adjusted easily.  

As it is also shown in experimental results section, some recent 

advanced manufactured robots have provided a velocity mode 

control in which the robot can be easily commanded in desired 

direction of movement by a velocity command. Such mode of 

control automatically will compensate the effect of external force 

torque on the joints, a direct dynamic equation of the robot velocity 

would be accessible without need of inertia and Coriolis terms 

parameters involved in mathematical equations. 

2.2 Interacting Force Moment Modeling 
To introduce a model for interacting force-moment between the 

object and end-effector, similar to [12] we assume that the object 

3D surface geometry can be stated as a 3-dimensional constraint 

manifold by: 

𝜙(𝑋, 𝜃)  =  0 (16) 

 

During the contact with the object the end-effector Cartesian 

position satisfies the above equation. The 𝜃 is a vector including 

the object-related parameters and determines the shape of the object 

or constrained surface.  

Using partial derivative and chain role taking time derivative of 

(16) yields following equation: 

 

𝐽(𝑋, 𝜃)𝑋̇  =  0 (17) 

 

In which 𝐽(𝑋, 𝜃) is the so called constraint Jacobian matrix defined 

as: 

𝐽(𝑋, 𝜃)  =
𝜕𝜙(𝑋, 𝜃)

𝜕𝑋
  

(18) 

 

This relationship indicates that the velocity of end-effector 

movement on the surface is always perpendicular to the surface 

gradient vector. Actually, the velocity of end-effector belongs to 

the null space of constraint jacobian matrix. This matrix is very 

useful in modeling of moment inserted from the surface to the end-

effector. The moment generates under the end-effector attached 

sensor from the misalignment situation between the sensor plate 

with the surface. Having access to the surface gradient vector and 

the end-effector direction, one can determine the resulting moment. 

The interaction force between the end-effector and the surface 

directly depends on the amount of elasticity of the contacted object, 

Fig. 1. 

 

 

 

Assuming the elasticity of 𝐾, interaction force is also related to the 

amount of surface deformation from the equilibrium point of 

contact 𝑋0: 

 

𝐹𝑒  =  𝐾|𝑋 − 𝑋0| (19) 

  

The force is always in the end-effector z direction or end-effector 

approaching direction.  

To formulate the moment, let to assume that the wrist has a circle 

shape with radios equal 𝑟. The resulting moment sensing under the 

sensor plate would be: 

 

𝑚𝑒  =  𝑟(𝑧𝑒  × 𝐽𝑒𝑓𝑒) (20) 

 

This relationship indicates that the cross product of end-effector 

approaching direction and surface normal vector, is a measure of 

misalignment between the end-effector and the object surface. 

Where 𝑧𝑒  is the unit vector of end-effector approaching direction is 

expressed in end-effector frame and 𝐽𝑒 is the surface gradient vector 

𝑓𝑒  is the force vector capturing the end-effector z direction inserted 

force by (20) defined as follow: 

Figure 1. Decomposition of contact force during 

grasping 

 

. 
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𝑓𝑒 = [
0
0
𝐹𝑒

] 
 

(21) 

In next section, using the proposed model for force and moment 

modeling, we aim to generate required force moment term inserted 

in right hand side of  (15) to guide the end-effector to move on the 

object surface. This movement finally reaches the end-effector to a 

suitable configuration for grasping the target object. 

3. UNIFIED REAL TIME POLICY 

GENERATION  
Grasping is a task of combination of movement and alignment 

around the object. Depend on the rate of mixture of movement and 

alignment, the object will be grasped first either by movement or 

alignment. Naturally this process can be done sequentially or 

continuously. Sequentially means first completely alignment with 

the object and then move on the object and vise-versa. As these two 

distinguishable phases be accomplished at the same time the 

process is called continuously. Our goal is to provide a smooth 

combined version of mixture of both of them.  All these explanation 

reveals this fact that grasping task is required a kind of policy 

definition for the task at each instant of time. In other words, a real 

time on line version of policy generation is required. 

Aiming to this purpose, the following definition for 𝐹𝑒
𝑒  in (15) is 

presented: 

 

𝐹𝑒
𝑒 =

[
 
 
 
 
 

0
(1 − 𝛼(tanh (𝐹𝑦𝑒)))(𝐹𝑦𝑒 − 𝐹𝑑𝑦𝑒)

𝐹𝑧𝑒 − 𝐹𝑑𝑧𝑒
𝜏𝑥𝑒

𝜏𝑦𝑒

0 ]
 
 
 
 
 

 

 

(22) 

 

All the terms inside the vector is the sensor provided information. 

The role of (1 − 𝛼(𝑡𝑎𝑛ℎ(𝐹𝑦𝑒))) is crucial. As long as the force in 

movement direction or y direction is near zero, the whole 

coefficient vanishing and the commanded force in y direction 

guides the end-effector on the surface. Also, if it is far from zero, it 

is an indicator of misalignment with the object. In such case, 

alignment has more priority over movement. So the whole term is 

around zero which means ineffective commanded force in y 

direction.  

More precisely, the term in end-effector y direction can move the 

end-effector as long as the force in opposite direction be less than 

predefined desired force. This situation certainly cannot happen 

when the end-effector is not aligned with the surface. Here is where 

the moment on the end-effector due to misalignment isn’t zero. As 

a consequence of commanding the robot with this measured 

moment from the sensor, the robot starts to become aligned with 

the object as much as it can to reduce the level of opposite force 

and create freedom for end-effector to move on the object in desired 

direction.  

4. Experimental Results 
To demonstrate the proposed real time policy, we use the Mico 

Kinova robot. It is a six degree of freedom light assistive robot 

supported by ROS package. The robot has velocity mode control in 

which one can command the robot end-effector with desired 

velocity. Based on (9) using the rotation matrix between the end-

effector and base frame, one can easily compute the end-effector 

velocity in end-effector frame and also send the desired velocity in 

end-effector frame to the robot. To identify the dynamic equation 

governs the system, we can command the system by just step 

function in each direction of end-effector. The error between the 

command and the end-effector velocity is in Figure.2. Since the 

data received form the robot is very noisy, we just pass them 

through a low pass filter.  

The target object for grasping is a bottle of water. We select 𝛼 the 

coefficient of 𝑡𝑎𝑛ℎ function in (20) equal zero. In such case, the 

grasping task will be done purely as an alignment before complete 

grasping. As the uploaded video in 

(https://www.youtube.com/watch?v=Y19Zw3-3VDY) confirms, 

the grasping by proposed policy is done successfully. The Figure.3 

shows the profile of end-effector force and moment during making 

contact with the object. The force in approaching direction is set on 

a constant value while the end-effector has contact with the object 

during grasping process. It is worth noting that the force for x and 

y direction are due to this fact that the gripper fingers have no equal 

contact with the object. The alignment is done by the information 

provided by the torque around end-effector y axis denoted by 𝜏𝑦 . 

All the force torque sensor data converge to a steady state after a 

period of alignment. During this time the torque results from 

misalignment is bigger that it’s steady state situation. 

 

 

 

 

 

Figure 3. The force moment profile during alignment 

and grasping the object 

 

 

Figure 2. End-Effector Frame Velocity and Desired 

Values 

 

 

https://www.youtube.com/watch?v=Y19Zw3-3VDY
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5. CONCLUSIONS 
In this paper we proposed a real time policy generation algorithm 

based on the real time data. The approach is smooth in 

implementation. Robot grasping as a good example demonstrates 

the performance of suggested solution. The provided figures of 

work indicate that the robot can align itself with object during 

grasping process.  
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