
Target Identification and Retrieval Integration with

Swarm Robotics

Kumar Yogesh Shah, Naadir Kirlew, Daniel Klumpp, Jose Tormo, Grant Wilcox, Carlos Celemin,

Abdulaziz Alenezy, Pietro Dimitri, Ibrahim Tansel

Florida International University

Department of Mechanical and Materials Engineering

Miami, Florida 33174

ABSTRACT

The research presented within the following paper was developed

in conjunction with the goal of participating in the 2018 NASA

Swarmathon Competition, an In situ resource utilization type

challenge. FIU’s motivation for participation was the advancement

of research with a purpose of developing integrated robotic

platforms through means of swarm robotics. The FIU project team

conducted research via a variety of scientific papers and research

on swarm robotics and behaviors, as well as various search

algorithms and their performance to ultimately develop a search

algorithm code to complete the desired search and retrieval task

within the confines of resource availability and time constraints.

The search algorithm was implemented with identification and

retrieval operations, then tested against a base code offering limited

functionality. The two variations were tested via the NASA

provided virtual platform, Gazebo. The results of the two

simulations were used as comparison to gauge the margin of

improvement achieved by the developed search and retrieve

algorithm code over the provided base code. Results are outlined

below.

I. INTRODUCTION

The motivation for the research conducted and described below is

the Third Annual NASA Swarmathon Competition held annually

at the Kennedy Space Center in Florida. Florida International

University’s (FIU) objective was to develop an integrated robotic

platform capable of improving the resource retrieval rate by

upgrading the base code and search algorithm used in the swarm

robot rovers provided by NASA. The reason for the development

of these robotic platforms is resource location, identification, and

collection, also known as ISRU (In-situ resource utilization) in

extraterrestrial type missions. Using the NASA provided robotic

rovers, dubbed Swarmies, the team aimed to develop an efficient

search and retrieve algorithm to autonomously collect the available

“planetary resources” which are represented by AprilCubes in the

Swarmathon competition. FIU was motivated to participate in the

Swarmathon to contribute to the collective cause of revolutionizing

extraterrestrial exploration via implementation of swarm based

robotic systems through research, innovation, and teamwork.

The study had two components: coding and enhancement of it with

by reviewing previously published studies. The basic code was

prepared by dissecting the base code provided by NASA, provide a

basic understand “as-provided” functionality, as well as

exploitation possibilities regarding the modification of the provided

base code. At the same time existing publications related to swarm

functions including algorithms, effective ways of communication

between rovers, as well as optimization algorithms were reviewed.

From the publications and research, a series of possible search and

retrieval behaviors were designed and studied to understand its

functionality on the Swarmies platform. The final code was

prepared by integrating the parallel studies. Testing was then

performed, and the results of virtual simulations were compared to

analyze the outcomes.

II. LITERATURE SURVEY

2.1 Swarm Robotics

The term swarm robotics is based on multi-robot systems referring

to multiple robots cooperating to perform a complex set of tasks.

Swarm robotics is an approach to multi-robot systems in which

multiple robots are involved, taking biological behaviors of swarm

like creatures, such as ants, as inspiration to accomplish search,

identification, and collection. Swarm robotics dates back nearly 40

years, to the 1980’s [2], having had major strides as research

provides new solutions for complex tasks in a broad field of

possibilities, yet swarm-like technology is still considered to be in

its infancy stages.

Due to the availability of the multiple agents, the swarm itself may

be far more simplistic than a centralized single robot performing

complex tasks, therefore, the behavior of the swarm would be

considered a complex combination of many simple individual

robots. Swarm robotics allows for multiple agents to take on

complex tasks, allowing for a simplification of each unit rather than

a single, far more intricate robot. The decentralization and

autonomy into local communication through distributed

intelligence between each swarm robot allows for a greater overall

grasp of the complex task at hand, leading to an increased

robustness and reliability regarding the task at hand [9].

Based on the task and its complexity, sheer numbers alone do not

necessarily produce the best possible outcome according to insight

gleaned from preliminary research. Swarm robots need an efficient

way of communication with a certain level of intelligence to

reliably cooperate as a whole. Multi-agent robot systems, such as

swarms, are intrinsically advantageous over the single robot system

1

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

solution [1]. Advantages such as parallelism allow for

simplification of a larger single task into subtasks for increased

speed and or efficiency, as confirmed by related research and

applications. The robustness of the solution is increased due to the

introduction of redundancy by essentially eliminating single failure

points. Adding to the advantages of swarm technology, adaptability

and flexibility allows for tasks to not be exclusive to anyone agent

in case of unexpected failures. Lastly, the scalability of swarm

robots is desirable as tasks assigned to multi-robot systems become

far more complex, thus the high capacity for scalability becomes

increasingly relevant.

2.2 Robot Operating System (ROS)

The Robotic Operating System (ROS) is a flexible platform to

implement coding for robots that can be shared and communicated

as needed across multiple platforms in the robotic swarm. The ROS

includes libraries, tools, and convention that aims to assist in

creating complex robot behavior [9]. The ROS is an integral piece

of the swarm technology necessary to facilitate autonomy of the

search and retrieve competition goal. As the Swarmies navigate the

competition course, communication related to obstacles and

resources can be passed between the individual rovers via the ROS.

While the communication capabilities were not utilized within the

subject experimentation, the ROS provides the possibility to

expand the search and retrieval capabilities of the robotic swarm.

2.3 AprilTags

The AprilTag system is a printable code style tag that is used in

computer based visual detection systems. Edwin Olsen at the

University of Michigan founded and pioneered the AprilTag

system. The tags are 2D barcodes that were developed to aid in the

visual capabilities of the robots as they perform robotic functions.

See the figure below.

Figure 1 – AprilTag 2D barcode

The tags provide a unique fiduciary marker for the robot’s camera

that facilitates the tag’s identification and determination of the

distance to the location in the image. It is advisable that the user

calibrates the camera and pre-determines the physical size of the

tag in use. The tags are made in a normal printer while the detection

software is used to calculate the approximate location based on the

known size of the unique code arrangement. Java or C applications

are used with AprilTags; however, the C implementation is

recommended since it requires no external application [4].

2.4 Search Algorithms [8]

The following represents search algorithm techniques researched

by the FIU team as code design alternatives for implementation into

the ROS on-board the robotic rovers. Each algorithm was studied

to assess feasibility regarding the ease of implementation

considering time constraints faced by the team in order to develop

a working algorithm necessary to compete. The algorithms that

offer advantages over alternatives are favorable but require further

resource input to achieve successful coding. FIU identified the

following algorithms as possible candidates for implementation.

Path finding algorithms display maps as nodes with each node

having a movement price associated with the potential movement.

This price represents the value tied to the cost of moving to a

specific tile while calculating the path. While calculating a path,

these algorithms take into account the local and global price to

make sure the path chosen is the most optimal. Local price is the

price of associated with movement to each of the tiles available

around the current position or source tile. Global price is the total

price associated with traversing each path to the intended goal.

Analyzing both permits the code find the most optimal path to the

targeted goal.

2.4.1 Greedy Search Algorithm

The Greedy code takes into account the local costs while moving

to the goal hoping it would lead to the cheapest global cost. This as

shown in the image below does not take into account for objects in

the way and makes the path route sometimes more expensive than

other route plotting algorithms.

Figure 2 – The Greedy path plotting algorithm movement from

the source tile (pink) to the goal tile (purple). Note that obstacle

avoidance was not considered during early movements [8]

2.4.2 Dijkstra Search Algorithm

The Dijkstra algorithm analyzes all possible paths to the goal and

will choose the path with the lowest global cost, but the most

notable compromise is the Dijkstra search process uses a significant

amount of time relative to alternatives. As shown in the image

below, the Dijkstra algorithm searched for a path at the top of the

map when the goal was at the bottom of the map. Crucial time and

resources are spent accomplishing the intended goal and evidently

this process is inherently inefficient on its own.

2

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

Figure 3 – The Dijkstra path plotting algorithm movement from

the source tile (pink) to the goal tile (purple). Note the large

number of tiles searched at the top of the grid that were ultimately

insignificant to reaching the goal [8]

2.4.3 A Star (A*) Search Algorithm

A star (A*) is a path plotting algorithm that plots a path the shortest

distance from point A to point B. This code considers the cheapest

possible and most direct route while attempting to avoid obstacles.

The A* code was created by combining the Greedy Best-First-

Search and Dijkstra’s Algorithms, both discussed above. The

Greedy code works fast to arrive to the goal but is not always

efficient. The Dijkstra algorithm calculates numerous alternate

paths, ultimately making it choose a better path, but at the cost of

time.

The combination of both Dijkstra and Greedy algorithm gave birth

to A* and as shown in the map below it combines the search method

of both to make a more efficient code. A*, like Greedy, tends to

search for a path in the direction of the goal, but does not move

according to local cost. A* looks for the most inexpensive path to

the goal like Dijkstra, but unlike Dijkstra, this code does not spend

time analyzing paths unnecessary path to the goal.

Figure 4 – A* path plotting algorithm movement from the source

tile (pink) to the goal tile (purple) [8]

A* is the best combination of both of algorithms deriving its

abilities form the strengths of both methods and calculates the most

efficient path in the direction of the goal. A more familiar

application of the A* path plotting algorithm is the implementation

of A* that is used by our GPS and other path calculator programs

like Google Maps and Waze. These systems rely on the A* path

algorithm to plot the best routes to distant places.

2.4.4 Particle Swarm Drone Search Algorithm

The particle swarm drone search algorithm was recommended to

the FIU team as a feasible search method for implementation by

on-campus faculty at FIU. The particle swarm drone search

algorithm searches for items in an artificial map using particle

swarm methods. Since it searches in an artificial environment,

special consideration will be needed to ensure the search algorithm

would be functional with the competition robots. Particularly, focus

would need to be placed on the considerations for upgrading the

movement system away from that of a particle as our terrestrial

drone moves differently than that of the particle. The particle

swarm drone search algorithm implements nine different search

algorithms into one, namely; Sphere, Rosen, Easom, Michalewics,

Rastrigin, HolderTable, Ackley, Shubert and Rosenbrock. While

the article swarm drone search algorithm exhibits potential for

successful search capabilities, time constraints surrounding

development of related code directed the FIU team away from

utilizing the discussed method.

2.4.5 Coordinate-Based Search Algorithm

The coordinate-based search algorithm design consists of a custom

algorithm derived by the FIU coding team and uses the location of

the drone to search the field for retrieval targets, goals, and

obstacles. The algorithm divides the field into designated search

quadrants, then breaks down each quadrant into rows on which the

rover is intended to move and search. The number of rows is

dependent on the size of the search field. When the drone finds a

resource, it would save the current position of resource

identification in its memory and proceed to return the procured

resource to the designated collection zone. The drone would then

return to the point it left off before returning to search the field. The

coordinate-based search algorithm showed significant potential for

implementation in conjunction with additional functionalities

necessary to perform the desired tasks of search and retrieval.

Consequently, the coordinate-based method was the focus of FIU’s

proceeding with code development.

2.4.6 Proposed Search Algorithm

The FIU team developed its own search algorithm. The search

algorithm is a univariate linearized search algorithm that was

structured using the position of the Swarmie within the expected

competition area to search the field and use its location to direct it

in the desired linearized pattern. The algorithm allows for

linearized searches of the field to retrieve as many cubes as possible

before the time limit is reached. The FIU team did not designate a

scouting Swarmie to find all cube while the others pick up. Instead,

all Swarmies are coded to pick up AprilCubes when identified. The

algorithm has a built-in avoidance system making the robot move

left or right within a row until the obstacle has been bypassed. The

Swarmie will then return to the active row.

A flowchart explanation and a corresponding description of the

main functions of the search and retrieve algorithm can be viewed

in the Appendix of the paper.

3

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

III. ALGORITHM PERFORMANCE IN

SIMULATED ENVIRONMENT

3.1 Gazebo Virtual Testing Platform [6]

The FIU team tested the chosen search algorithm with a computer-

based simulation environment named Gazebo. Gazebo is a 3D

dynamic simulator with the ability to accurately and efficiently

simulate populations of robots in complex environments [6]. These

characteristics, as described by gazeboism.org, allows Gazebo to

be the ideal environment to test and optimize complex algorithms

that are based in ROS, C++, and even python. The basic

requirements of Gazebo are Ubuntu, a variation of Linux, as well

as Nvidia video card and an Intel I5 processor. This allows the trials

done to be replicated by anyone if the computer has the proper

hardware.

Furthermore, with Gazebo it is possible to run virtual simulations

of robots or physical robots. This allows the users to create code

that can be first tested on the virtual simulation then incorporated

into a physical robot to test for applications with real world stimuli.

More information regarding the Gazebo virtual simulation platform

can be found on Gazebo’s website listed in the reference section at

the end of this report.

Figure 5 – FIU’s Gazebo virtual simulation environment depicting

two rovers, a collection zone at the center, and AprilCubes

scattered throughout the simulated competition environment

3.2 Simulations

The search algorithm chosen and implemented by the FIU team was

initially identified as the most effective and simplest to translate

given resource and time constraints. The final code developed is

categorized as a univariate linearized search algorithm. The

performance of this algorithm was tested against the NASA

provided base code that resembles a random search pattern

algorithm. The base code was found composed of a random number

generator commanding the Swarmie robot to move in a randomized

pattern with no goal or aim of sweeping a distinct area or path.

Virtual testing and simulations were set up in the Gazebo

environment discussed above. Conducting testing in the virtual

platform would provide a reliable environment capable of

simulating the Swarmies at Kennedy Space Center competition

field. The largest consideration regarding the subject virtual

simulations are that any simulations conducted in Gazebo represent

optimal conditions compared to testing perform on the physical

rovers.

Optimal considerations include that the onboard instrumentation is

performing as expected and no anomalies are encountered in the

virtual environment. Comparing the two codes and search

algorithms in this manner would allow for assessment of the

performance gained over the base code without the need to consider

physical robotic hardware performance at the simulation phase of

the code development. In order to analyze the performance of the

chosen search algorithm, the algorithm was translated into C-plus-

plus (C++ or Cpp) code in the search controller behaviors, and then

tested against the random search algorithm provided by NASA as

a starting point.

The testing parameters were as follow: 10-minute simulations were

run with three virtual rovers on a 15-meter by 15-meter field.

Uniform and clustered configurations of AprilCube placement

were utilized with the number of cubes increased over three runs.

The testing was done with 32 and 64 resources as this proved to be

the best number of AprilCubes allowed for the simulation to run

without errors. The rovers started from the same position with each

new trial and the cubes were placed in the exact same locations for

every consecutive trial run to maintain comparable consistency.

Using the plotted data from the GPS and odometer on the rqt-

interface, the total area covered by each rover was summed and

recorded. Since the goal of the algorithm is to identify and retrieve,

and each rover is capable of recognizing multiple cubes and tagging

their location, the greater the amount area covered in the allotted

time yielded better algorithm performance.

3.3 Simulation Results

Through multiple runs on the Gazebo virtual simulation

environment, including the variations of multiple setups discussed

above which include the random search algorithm and the

univariate linearized search algorithm, the performance of FIU’s

developed algorithm over the provided random search algorithm

became evident. The more linearized search algorithm developed

was capable of searched a wider area in the trial defined amount of

time, when compared to the random search algorithm that provided

by NASA, in all but one instance. The results of the field area

covered by three Swarmie robots with two types of arrangements

for the cube position, and a varying number of cubes are presented

in Table 1. The below table represents the four scenarios set up that

performed in the simulation.

Table 1 – Search algorithm performance outcomes

According to the outcomes represented in Table 1, the univariate

linearized algorithm allowed for the rovers to each cover a higher

amount of area in the allotted 10 minutes in all virtual simulations

excerpt for the Clustered-32 trial. Based on the virtual simulations,

the FIU team choose to utilize the univariate search algorithm

developed. This algorithm showed the most promise considering

additional functionality operations in need of development for

4

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

successful physical testing. Of the additional operations, the pickup

controller function is among the most pertinent for successful

retrieval of identified resources.

IV. ROBOTIC INTEGRATION

4.1 The NASA Swarm Robot – “Swarmie”

The first task regarding integration to the physical platform

undertaken was analyzing the provided Swarmie. Gaining a

foundational understanding of how the individual components of

the robot are laid out and function aided in code development and

ensured the provided on-board equipment of the robotic system was

undamaged and would function properly. Each Swarmie is

equipped with ultrasonic sensors, a live-feed camera, a GPS, a

compass, wheel encoders, a gripper claw assembly, and an inertial

measurement unit. The Swarmie was assembled according the

instructions provided by NASA and available on the competition

website.

Figure 6 – Front and left side views of the assembled Swarmie

provided by NASA

4.2 Computer Vision and Open CV

Computer vision is a multidisciplinary field pertaining to computer

capabilities for developing a powerful level of understanding from

images and videos. OpenCV is an open source computer vision

library equipped with hundreds of functions and algorithms for

processing images and videos with support in C++ [5]. The

OpenCV platform is utilized in the Swarmathon as means of

recognizing the AprilTags on the AprilCubes and the collection

zone or home base. OpenCV functions and algorithms use the live

feed from the Logitech C170 camera mounted on each Swarmie.

The camera feed is dependent on the limitations of this specific

camera, as well as outside variables such as lighting and stability

while the rover is in motion. The FIU team focused on exploitation

of the provided code to merge an efficient algorithm with the

OpenCV capabilities.

The on-board camera is the eye of the robot and it is used to detect

and recognize objects, specifically AprilTags and subsequently

AprilCubes. The camera used in the Swarmie is pointing towards

the ground at a 30-degrees from horizontal and works with internal

software to detect and identify the AprilTags. This software was

coded to detect a target at 0.65-meters in front of the robot’s gripper

assembly. The figure above shows the relationships between the

AprilCube and the Swarmie, and how the distance values to each

were calculated. This calculation is based on measurements of the

hypotenuse and adjacent, using the distance of target the camera

detects as the hypotenuse and the adjacent is known as it is a

physically measurable distance. The system works with OpenCV

and Computer Vision to identify the AprilCubes and is an integral

portion of the overall success related to resource retrieval

performance.

Figure 7: Camera and target identification with reference

geometry depicted as red lines

4.3 GPS - Global Positioning System

A low-power consumption GPS chip can be found on board of each

Swarmie. NASA has equipped them with the LEA-6 modules,

capable of high performance per the u-blox 6-position engine. The

GPS utilizes the doppler shift in radio frequencies in determining

lines of both position and location. Using triangulation from the

information of at least 3 satellites, signals with time stamps are

collected by the GPS and compared to the time it arrived in order

to produce longitude and latitude coordinates. GPS bias is usually

remedied by allowing clock errors as a variable, allowing the

receiver to successfully locate the Swarmies position on Earth.

4.4 Inertial Measurement Unit (IMU)

The IMU unit on each Swarmie reports x, y, and z acceleration of

the robot, as well as orientation using the magnetic north as

reference. Exploitation of the onboard IMU will produce data that

can be checked against other instrumentation data. The IMU data

will also help limit the Swarmies’ speeds to values within the

competition rules.

4.5 Kalman Filters

The collected data is checked through offset calibrations, which

were physical values that can be double checked with the code for

accuracy, and through the use of Kalman Filters. Kalman Filters are

an optimal recursive data processing algorithm pertinent to

continued function of the algorithm. The filter is capable of

analyzing all the provided input from different sensors and returns

optimized data that parallels the system’s needs. A graphical

representation of the application for a Kalman Filter is as per the

figure below.

5

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

Figure 8 - Common Kalman Filter Application

V. METHODS

5.1 Global Positioning System (GPS)

The GPS was given extensive consideration while developing the

Swarmies’ code. The location reference the GPS provided was

essential in the design of the pattern the Swarmies will be taking.

The GPS must take into account the location of the Swarmies to

accurately map the patterns in which the other Swarmies move and

where obstacles and cubes are located. The GPS is primarily

utilized by calling a specified function to execute do-while loops

that allows the Swarmie to move to locations using its GPS data.

5.2 Encoders

The FIU team implemented minimal changes to the provided wheel

encoder program. Past FIU’s teams performed in-depth evaluation

of the encoders related to the same design goals and provided

information stating that the encoders were not an accurate

information source. Reliance on the encoders made the robot

perform incorrectly and produced excessive error when relying on

the wheel encoder sensors for navigation.

5.3 Compass

The compass was implemented to work with the GPS and the

search algorithm to calculate the current direction the robot is

moving. The compass proved a vital tool for establishing pertinent

information related to the Swarmie’s heading data.

5.4 AprilCube Pickup and Drop Off

The FIU team changed the pickup and drop-off code to work on a

distance-based calculation and continuously used the GPS and

odometer to calculate the rover’s current position while the camera

was used to update the AprilCube position. The original pickup and

drop-off sequence installed on the robot relied on a time-based

countdown and control sequence where it would perform different

actions based on how much time had passed. This method proved

ineffective and failed during initial testing and was quickly

abandoned for the method described above.

The new method ensured the Swarmie was able to correctly identify

and collect the targeted resource, and then not drop or lose control

of the AprilCube on its way back to the collection zone. If dropped,

the robotic code was constructed to tell the Swarmie to move back

and search for the AprilCube in a 160- degree range from the last

known location.

VI. PHYSICAL TESTING

6.1. Initial Configuration and Testing

Testing was conducted to establish and understand the Swarmies’

capabilities and functionality after the search algorithm was

developed and tested on the virtual platform. The testing of the

Swarmies was conducted in FIU’s robotics lab in both the provided

simulated environment using Gazebo as discussed above, and a

mock course built in the robotics lab to execute physical tests and

evaluate the results as discrepancies were anticipated between the

virtual and physical simulations.

The model course included the NASA specified home base, and

replicas of the competition AprilCubes that featured printed

AprilTags on six sides of the cube. Initial configuration of the

Swarmie contained parameters that were interfering with other

operations during the starting procedures. To resolve this, the FIU

team conducted individual component tests or evaluations to check

how sensitive each component was. The observable data was

compared with the output data displayed on the rover rqt-interface.

The rqt interface proved to be a crucial tool for evaluating physical

performance. See the Figure 9 depicting a screenshot of the rqt-

interface.

Figure 9 – Rqt-interface or rover interface

6.2 Calibration

Calibrations were performed for each component to increase

accuracy. The calibration was done initially by testing the rover’s

functions related to the onboard camera, GPS, and gripper

functionality. To specifically determine the offset of the actual

Swarmie, the distance was measured from the chassis to various

points of the gripper, the chassis to the camera, the camera to the

grippers and ground, various range of angles the camera could

function, as well as the actual velocities that the Swarmie travelled.

Appropriate comparisons were made between physical and code

produced data. The FIU team placed AprilCubes at various

distances and angles away from the rover. Camera and ultrasound

6

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

sensors stated values were recorded and compared to the actual

known distances to determine at what values the camera and

ultrasound should respond to and operate based on.

6.3 GPS

GPS testing was done by taking screenshots of the Rover interface

(rqt-interface) displaying NAVSAT, ODOM, and position data

produced by the physical rover during simulations. The position of

the Swarmie was then changed after each trial and the testing was

repeated. The results of all tests were compared to assess the

accuracy and reliance of the GPS. While testing the GPS, the FIU

team noticed that the rover’s reported location was not as accurate

as initially anticipated. Further investigation led to the conclusion

that the GPS hardware and software the robotic rovers utilize can

produce up to a 5-foot margin of error.

6.4 Compass

Testing the compass was conducted by rotating the Swarmie while

comparing the direction the Swarmie was reporting though the rqt-

interface with an actual compass in hand inside the robotics lab.

The complete testing was done using 20-degree directional change

increments and the results were compared. No significant

discrepancies worth offsetting was noted during the compass

evaluation.

6.5 Wheel Encoders

The wheel encoders were tested by measuring and marking the

wheels of the Swarmies, then commanding it to move in a desired

direction. Through the rqt-interface, the information provided by

the operating Swarmie was noted and then compared with the

known physical data information.

6.6 Ultrasound Sensors

Testing for the ultrasound sensors was done by placing an object in

front of the Swarmies within recognizable distance to the sensor’s

mounted location. A measurement was taken by hand to compare

with the produced data representing the distance between the sensor

and the object.

VII. RESULTS

7.1 GPS

The position data taken by the algorithm is usually error prone, as

each iteration of the GPS would locate the Swarmie at different

positions within a specific range as the data is converted to x and

y-coordinates on the world map coordinate. This can be appreciated

by the rqt GUI interface map display as per the Figure 10, where

the dots are GPS x and y-coordinates, and they propagate at a

certain distance from the IMU and wheel encoders data.

Figure 10 - IMU and GPS Graphical Data

7.2 Ultrasound Sensors

While testing the ultrasound sensors, The FIU team observed the

calibration of the sensor was initially too sensitive and was finding

objects from 5-feet away. The increased sensitivity caused the

Swarmie to enter an evade mode as though it encountered an

obstacle to avoid even though no obstacle existed.

The ultrasound sensors were adjusted to a lower sensitivity that

resulted in the Swarmie operating more predictably and as coded.

The Swarmie no longer entered the evade mode after the

adjustments were made. The adjustments subsequently allowed the

Swarmie to identify and pickup AprilCubes as intended. The

ultrasound sensitivity adjustment enabled proper function of the

Swarmie and behavior as intended by the FIU coding team.

7.3 Wheel Encoders

It was concluded that noise picked up by the IMU and GPS, and an

amount drift accumulated by the wheel encoders, facilitated

unpredictable divergence from the intended path and caused the

Swarmie to become lost or simply have inaccurate position data.

The noise captured can be appreciated in the following figure, part

of the rqt and GUI interface. The amount of noise and drift is

displayed while running simulations and running code on the

physical test Swarmies.

Figure 11 - GPS and IMU GUI offset data

The data gathered by the GPS, IMU, and Wheel Encoders was

checked against each other and through the EKF (Extended Kalman

Filter) and results showed that after filtering the data nearly

represented the correct position of the Swarmie. The Extended

Kalman Filter is a built-in option that FIU implemented at

discretion. The FIU team decided to apply this utilized Kalman

Filter due to its capacity to linearize.

7

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

7.4 Camera

Although the image quality of the camera was an initial concern

while the Swarmie was in motion, laboratory testing concluded this

did not impede the Swarmie’s search and retrieve process. The FIU

team was satisfied with the camera’s functionality after sufficient

testing proved the images produced during slower movements were

reliable and allowed for proper identification of AprilTags.

7.5 AprilCube Pickup and Drop Off

The adjustment from a time-based pickup to a distance-based

pickup was an invaluable change implemented by the FIU team.

When the Swarmie positively identified an AprilCube, it

successfully completed the pickup function approximately 70% of

the time on its first attempt and was observed to take a maximum

of three attempts to retrieve the AprilCube as intended.

Adjustments to the pickup and drop-off function over the provided

base code resulted in better overall Swarmie performance.

Figure 12 – Swarmies executing pickup and drop off functions

during laboratory testing

VIII. CONCLUSION

The development of FIU’s implemented algorithm was a direct

outcome of the physical constraints found through multiple testing

iterations and time allowance. The team observed that the

calibration of the rovers’ sensors was extremely important in the

physical test as the results from the performance of the virtual

simulations varied from the real-world testing of the rovers, as

expected, as the Gazebo platform offers ideal testing conditions.

Ultimately, the comparison of the base code provided by NASA

and FIU’s univariate linearized search algorithm revealed

improvements were made over the base code. The outcomes were

sufficient to move forward with code development.

FIU’s final approach to the search algorithm drew inspiration from

two main sources, a biological approach derived from ant colonies’

behaviors and the linear motion of chess pieces on the game board.

Using linearity, the rovers are coded to search all sections of a

determined area as they attempt to move in straight patterns to

cover the entire developed grid. This search algorithm was tuned

through the rqt-interface as the rovers searched for the AprilTag

resources in the laboratory test environment.

Obstacle avoidance allows for the rovers to cover the entire grid

and camera vision differentiates between an obstacle or AprilTag.

The GPS and odometry package played an important role in

improving the ability to retrieve AprilCubes and successfully place

them in the home base. The Kalman Filters allowed for more

reliable data from the GPS. The use of better performing hardware

could increase the efficiency of the algorithm’s performance. FIU’s

algorithm and improvements on the pickup control may be used in

later editions of FIU teams participating in the NASA competition.

A flowchart explanation and a corresponding description of the

main functions of the search and retrieve algorithm developed can

be viewed in the Appendix.

IX. ACKNOWLEDGMENTS

The construction and integration of the FIU team’s search and

retrieval algorithm was made possible by the Engineering

Manufacturing Center of FIU who offered unwavering support

throughout the development of the subject research. A special thank

you to the coding team, particularly Naadir Kirlew, for devoting a

significant amount of personal time to code development. Thank

you to all those who contributed to research and development of the

subject algorithm through extensive research and coding including

but not limited to: Kumar Yogesh Shah, Grant Wilcox, Daniel

Manfred Klumpp, Steven Andrew Garcia, Nelvin Chery, Ray

Nicolas Santamaria, Mellony Marie Ladino, Rami Ghazzara,

Luyan Zhang, Jose Miguel Tormo, Pietro Dimitri Gomez, Carlos

Celemin, and Abdulaziz Alenezy.

X. REFERENCES

[1] Altshuler, Yaniv, et al. “Swarm Intelligence — Searchers, Cleaners and

Hunters.” Unknown Publisher and Date.

[2] Mohan, Yogeswaran, and S.G. Ponnambalam. “An Extensive Review

of Research in Swarm Robotics.” ResearchGate, Jan. 2010.

[3] Moore, Thomas, and Daniel Stouch. “A Generalized Extended Kalman
Filter Implementation for the Robot Operating System.”

SpringerLink, Springer, Cham, 3 Sept. 2015.

[4] Olson, Edwin. “AprilTag: A Robust and Flexible Visual Fiducial

System.” April Robotics Laboratory, 2011

[5] “OpenCV Library.” OpenCV Library, OpenCV Team, 2018 [Online].

http://opencv.org/. [Accessed Jan-Mar 2018].

[6] Osrf. “Beginner: Overview.” Gazebo, Open Source Robotics

Foundation, 2014, gazebosim.org/tutorials?tut=guided_ b1&cat

[7] Parker, Lynne E. “Distributed Intelligence: Overview of the Field and

Its Application in Multi-Robot Systems.” Association for the

Advancement of Artificial Intelligence, 2007.

[8] Patel, Amit. “Introduction to A-Star (A*).” Introduction to

A*,1997,theory.stanford.edu/~amitp/GameProgramming/A

StarComparison.html

[9] ROS Wiki, "ROS/Introduction," Wiki.ros.org, 2018. [Online].

http://wiki.ros.org/ROS/Introduction. [Accessed Jan-Mar

2018].

8

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

APPENDIX: FINAL CODE EXCERPTS AND DESCRIPTIONS

Search Controller Flowchart:

The flowchart representation of the FIU code shown above depicts the search algorithm. The concept behind the search algorithm was derived

from the game of chess. The code programs the robots to create a grid based on search area. In the scenarios that were tested, the robots were

already programmed to know what the grid size was and coincided with the competition grid. The robots were then able to move in a linear

pattern that, between three rovers, would ensure the majority of the terrain was searched at least once. As such, the robot would first use the

GPS to understand what it’s current location was and break the coordinates down into x and y values. The robot then was programed to move

in the positive x-direction by creating a loop that would continuously move forward until an obstacle is detected and then would change

directions and move in the positive y-direction. This process was repeated and tested numerous times and was determined that the robots

were able to search the majority of the terrain as intended.

Calculate Current Location

Create a loop that continuously
moves in the +X direction

Obstacle detected & avoided

Creates a loop that continously
moves in the +Y direction

Repeats until target located

9

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

Pickup Controller Flowchart:

Above, the flowchart represents the FIU code used to retrieve a cube as shown. There were numerous methods tested including time-

dependent, position-dependent, sonar-dependent, and camera dependent. Ultimately, the code that worked the best and was used in the final

application was one that combined position, sonar and camera to ensure successful retrieval. Once a cube or resource was identified, the robot

would calculate the position of the cube using the hypotonus from the camera and the center of the chassis. Then the rover would create a

loop recalculating the distance of the cube from the robot until a predetermined distance was reached. In this scenario, that distance was

approximately 3.75-inches, which was the ideal location of the gripper to successfully retrieve the cube. In order to ensure the robot stayed

perfectly aligned to the cube, ultrasound was incorporated. Three sonar sensors were mounted above the gripper and below the camera

allowing for the rover to detect objects to its left, center, and right. As such, the code was made so that once a cube was identified the robot

would rotate either left or right so that the center sonar was the only one “blocked” indicating that the cube was directly in front of it.

Target found

Calculates distance from
chassis to target

Uses sonar sensors to align
center of robot to target

Creates a step counter
moving forward until

specified distance is obtained

Stops at specified distance
and attempts pick up of

target

10

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida

Obstacle Avoidance Flowchart:

The flowchart shown above represents the FIU code implemented for obstacle avoidance. In order to ensure the robots were capable of

successfully navigating terrain that included obstacles, an algorithm was written named Obstacle avoidance. The algorithm was based

primarily on the sonar sensors. The sonar sensors were capable of detecting objects farther away than the camera’s visibility could discern.

In addition, since three sonar sensors were used the robots were also able to detect which direction the obstacle was located at and more

accordingly. For example, if an obstacle was detected in the left and center sonar while the right sensor was clear, then the robot would rotate

towards the right allowing the robot to clear the obstacle without difficulty. Similarly, the robot would rotate to the left if the opposite

scenario was presented. In the event that both the right, left, and center sensor detected an obstacle, the robot would “flip a coin” and then

assign a value to heads and tail and move either right or left depend on the result.

Obstacle detected
using sonar

If Left sonar >
Right sonar

Rotate to left &
move forward

If Left sonar =
Right Sonar

Flip a coin

If number return
is 1 then rotate

right

If number return
is anything else

rotate left

If Right sonar >
Left sonar

Rotate to right &
move forward

