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ABSTRACT 

The research presented within the following paper was developed 

in conjunction with the goal of participating in the 2018 NASA 

Swarmathon Competition, an In situ resource utilization type 

challenge. FIU’s motivation for participation was the advancement 

of research with a purpose of developing integrated robotic 

platforms through means of swarm robotics. The FIU project team 

conducted research via a variety of scientific papers and research 

on swarm robotics and behaviors, as well as various search 

algorithms and their performance to ultimately develop a search 

algorithm code to complete the desired search and retrieval task 

within the confines of resource availability and time constraints. 

The search algorithm was implemented with identification and 

retrieval operations, then tested against a base code offering limited 

functionality. The two variations were tested via the NASA 

provided virtual platform, Gazebo. The results of the two 

simulations were used as comparison to gauge the margin of 

improvement achieved by the developed search and retrieve 

algorithm code over the provided base code. Results are outlined 

below.  
 

I.  INTRODUCTION 

The motivation for the research conducted and described below is 

the Third Annual NASA Swarmathon Competition held annually 

at the Kennedy Space Center in Florida. Florida International 

University’s (FIU) objective was to develop an integrated robotic 

platform capable of improving the resource retrieval rate by 

upgrading the base code and search algorithm used in the swarm 

robot rovers provided by NASA. The reason for the development 

of these robotic platforms is resource location, identification, and 

collection, also known as ISRU (In-situ resource utilization) in 

extraterrestrial type missions. Using the NASA provided robotic 

rovers, dubbed Swarmies, the team aimed to develop an efficient 

search and retrieve algorithm to autonomously collect the available 

“planetary resources” which are represented by AprilCubes in the 

Swarmathon competition. FIU was motivated to participate in the 

Swarmathon to contribute to the collective cause of revolutionizing 

extraterrestrial exploration via implementation of swarm based 

robotic systems through research, innovation, and teamwork.  

The study had two components: coding and enhancement of it with 

by reviewing previously published studies. The basic code was 

prepared by dissecting the base code provided by NASA, provide a 

basic understand “as-provided” functionality, as well as 

exploitation possibilities regarding the modification of the provided 

base code. At the same time existing publications related to swarm 

functions including algorithms, effective ways of communication 

between rovers, as well as optimization algorithms were reviewed. 

From the publications and research, a series of possible search and 

retrieval behaviors were designed and studied to understand its 

functionality on the Swarmies platform.  The final code was 

prepared by integrating the parallel studies. Testing was then 

performed, and the results of virtual simulations were compared to 

analyze the outcomes. 

II. LITERATURE SURVEY 

2.1 Swarm Robotics 

The term swarm robotics is based on multi-robot systems referring 

to multiple robots cooperating to perform a complex set of tasks. 

Swarm robotics is an approach to multi-robot systems in which 

multiple robots are involved, taking biological behaviors of swarm 

like creatures, such as ants, as inspiration to accomplish search, 

identification, and collection. Swarm robotics dates back nearly 40 

years, to the 1980’s [2], having had major strides as research 

provides new solutions for complex tasks in a broad field of 

possibilities, yet swarm-like technology is still considered to be in 

its infancy stages.  

Due to the availability of the multiple agents, the swarm itself may 

be far more simplistic than a centralized single robot performing 

complex tasks, therefore, the behavior of the swarm would be 

considered a complex combination of many simple individual 

robots. Swarm robotics allows for multiple agents to take on 

complex tasks, allowing for a simplification of each unit rather than 

a single, far more intricate robot. The decentralization and 

autonomy into local communication through distributed 

intelligence between each swarm robot allows for a greater overall 

grasp of the complex task at hand, leading to an increased 

robustness and reliability regarding the task at hand [9].  

Based on the task and its complexity, sheer numbers alone do not 

necessarily produce the best possible outcome according to insight 

gleaned from preliminary research. Swarm robots need an efficient 

way of communication with a certain level of intelligence to 

reliably cooperate as a whole. Multi-agent robot systems, such as 

swarms, are intrinsically advantageous over the single robot system 
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solution [1]. Advantages such as parallelism allow for 

simplification of a larger single task into subtasks for increased 

speed and or efficiency, as confirmed by related research and 

applications. The robustness of the solution is increased due to the 

introduction of redundancy by essentially eliminating single failure 

points. Adding to the advantages of swarm technology, adaptability 

and flexibility allows for tasks to not be exclusive to anyone agent 

in case of unexpected failures. Lastly, the scalability of swarm 

robots is desirable as tasks assigned to multi-robot systems become 

far more complex, thus the high capacity for scalability becomes 

increasingly relevant.  

2.2 Robot Operating System (ROS) 

The Robotic Operating System (ROS) is a flexible platform to 

implement coding for robots that can be shared and communicated 

as needed across multiple platforms in the robotic swarm. The ROS 

includes libraries, tools, and convention that aims to assist in 

creating complex robot behavior [9]. The ROS is an integral piece 

of the swarm technology necessary to facilitate autonomy of the 

search and retrieve competition goal. As the Swarmies navigate the 

competition course, communication related to obstacles and 

resources can be passed between the individual rovers via the ROS. 

While the communication capabilities were not utilized within the 

subject experimentation, the ROS provides the possibility to 

expand the search and retrieval capabilities of the robotic swarm. 

2.3 AprilTags 

The AprilTag system is a printable code style tag that is used in 

computer based visual detection systems. Edwin Olsen at the 

University of Michigan founded and pioneered the AprilTag 

system. The tags are 2D barcodes that were developed to aid in the 

visual capabilities of the robots as they perform robotic functions. 

See the figure below.  

 
Figure 1 – AprilTag 2D barcode  

The tags provide a unique fiduciary marker for the robot’s camera 

that facilitates the tag’s identification and determination of the 

distance to the location in the image. It is advisable that the user 

calibrates the camera and pre-determines the physical size of the 

tag in use. The tags are made in a normal printer while the detection 

software is used to calculate the approximate location based on the 

known size of the unique code arrangement. Java or C applications 

are used with AprilTags; however, the C implementation is 

recommended since it requires no external application [4]. 

2.4 Search Algorithms [8] 

The following represents search algorithm techniques researched 

by the FIU team as code design alternatives for implementation into 

the ROS on-board the robotic rovers. Each algorithm was studied 

to assess feasibility regarding the ease of implementation 

considering time constraints faced by the team in order to develop 

a working algorithm necessary to compete. The algorithms that 

offer advantages over alternatives are favorable but require further 

resource input to achieve successful coding. FIU identified the 

following algorithms as possible candidates for implementation. 

Path finding algorithms display maps as nodes with each node 

having a movement price associated with the potential movement. 

This price represents the value tied to the cost of moving to a 

specific tile while calculating the path. While calculating a path, 

these algorithms take into account the local and global price to 

make sure the path chosen is the most optimal. Local price is the 

price of associated with movement to each of the tiles available 

around the current position or source tile. Global price is the total 

price associated with traversing each path to the intended goal. 

Analyzing both permits the code find the most optimal path to the 

targeted goal. 

2.4.1 Greedy Search Algorithm 

The Greedy code takes into account the local costs while moving 

to the goal hoping it would lead to the cheapest global cost. This as 

shown in the image below does not take into account for objects in 

the way and makes the path route sometimes more expensive than 

other route plotting algorithms. 

 

 
Figure 2 – The Greedy path plotting algorithm movement from 

the source tile (pink) to the goal tile (purple). Note that obstacle 

avoidance was not considered during early movements [8] 

  

2.4.2 Dijkstra Search Algorithm 

The Dijkstra algorithm analyzes all possible paths to the goal and 

will choose the path with the lowest global cost, but the most 

notable compromise is the Dijkstra search process uses a significant 

amount of time relative to alternatives. As shown in the image 

below, the Dijkstra algorithm searched for a path at the top of the 

map when the goal was at the bottom of the map. Crucial time and 

resources are spent accomplishing the intended goal and evidently 

this process is inherently inefficient on its own. 
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Figure 3 – The Dijkstra path plotting algorithm movement from 

the source tile (pink) to the goal tile (purple). Note the large 

number of tiles searched at the top of the grid that were ultimately 

insignificant to reaching the goal [8] 

2.4.3 A Star (A*) Search Algorithm 

A star (A*) is a path plotting algorithm that plots a path the shortest 

distance from point A to point B. This code considers the cheapest 

possible and most direct route while attempting to avoid obstacles. 

The A* code was created by combining the Greedy Best-First-

Search and Dijkstra’s Algorithms, both discussed above. The 

Greedy code works fast to arrive to the goal but is not always 

efficient. The Dijkstra algorithm calculates numerous alternate 

paths, ultimately making it choose a better path, but at the cost of 

time.  

The combination of both Dijkstra and Greedy algorithm gave birth 

to A* and as shown in the map below it combines the search method 

of both to make a more efficient code. A*, like Greedy, tends to 

search for a path in the direction of the goal, but does not move 

according to local cost. A* looks for the most inexpensive path to 

the goal like Dijkstra, but unlike Dijkstra, this code does not spend 

time analyzing paths unnecessary path to the goal. 

 
Figure 4 – A* path plotting algorithm movement from the source 

tile (pink) to the goal tile (purple) [8] 

A* is the best combination of both of algorithms deriving its 

abilities form the strengths of both methods and calculates the most 

efficient path in the direction of the goal. A more familiar 

application of the A* path plotting algorithm is the implementation 

of A* that is used by our GPS and other path calculator programs 

like Google Maps and Waze. These systems rely on the A* path 

algorithm to plot the best routes to distant places.  

2.4.4 Particle Swarm Drone Search Algorithm 

The particle swarm drone search algorithm was recommended to 

the FIU team as a feasible search method for implementation by 

on-campus faculty at FIU. The particle swarm drone search 

algorithm searches for items in an artificial map using particle 

swarm methods. Since it searches in an artificial environment, 

special consideration will be needed to ensure the search algorithm 

would be functional with the competition robots. Particularly, focus 

would need to be placed on the considerations for upgrading the 

movement system away from that of a particle as our terrestrial 

drone moves differently than that of the particle. The particle 

swarm drone search algorithm implements nine different search 

algorithms into one, namely; Sphere, Rosen, Easom, Michalewics, 

Rastrigin, HolderTable, Ackley, Shubert and Rosenbrock. While 

the article swarm drone search algorithm exhibits potential for 

successful search capabilities, time constraints surrounding 

development of related code directed the FIU team away from 

utilizing the discussed method. 

2.4.5 Coordinate-Based Search Algorithm  

The coordinate-based search algorithm design consists of a custom 

algorithm derived by the FIU coding team and uses the location of 

the drone to search the field for retrieval targets, goals, and 

obstacles. The algorithm divides the field into designated search 

quadrants, then breaks down each quadrant into rows on which the 

rover is intended to move and search. The number of rows is 

dependent on the size of the search field. When the drone finds a 

resource, it would save the current position of resource 

identification in its memory and proceed to return the procured 

resource to the designated collection zone. The drone would then 

return to the point it left off before returning to search the field. The 

coordinate-based search algorithm showed significant potential for 

implementation in conjunction with additional functionalities 

necessary to perform the desired tasks of search and retrieval. 

Consequently, the coordinate-based method was the focus of FIU’s 

proceeding with code development. 

2.4.6 Proposed Search Algorithm 

The FIU team developed its own search algorithm. The search 

algorithm is a univariate linearized search algorithm that was 

structured using the position of the Swarmie within the expected 

competition area to search the field and use its location to direct it 

in the desired linearized pattern. The algorithm allows for 

linearized searches of the field to retrieve as many cubes as possible 

before the time limit is reached. The FIU team did not designate a 

scouting Swarmie to find all cube while the others pick up. Instead, 

all Swarmies are coded to pick up AprilCubes when identified. The 

algorithm has a built-in avoidance system making the robot move 

left or right within a row until the obstacle has been bypassed. The 

Swarmie will then return to the active row. 

A flowchart explanation and a corresponding description of the 

main functions of the search and retrieve algorithm can be viewed 

in the Appendix of the paper.  
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III. ALGORITHM PERFORMANCE IN 

SIMULATED ENVIRONMENT 

 

3.1 Gazebo Virtual Testing Platform [6] 

The FIU team tested the chosen search algorithm with a computer-

based simulation environment named Gazebo. Gazebo is a 3D 

dynamic simulator with the ability to accurately and efficiently 

simulate populations of robots in complex environments [6]. These 

characteristics, as described by gazeboism.org, allows Gazebo to 

be the ideal environment to test and optimize complex algorithms 

that are based in ROS, C++, and even python. The basic 

requirements of Gazebo are Ubuntu, a variation of Linux, as well 

as Nvidia video card and an Intel I5 processor. This allows the trials 

done to be replicated by anyone if the computer has the proper 

hardware.  

Furthermore, with Gazebo it is possible to run virtual simulations 

of robots or physical robots. This allows the users to create code 

that can be first tested on the virtual simulation then incorporated 

into a physical robot to test for applications with real world stimuli. 

More information regarding the Gazebo virtual simulation platform 

can be found on Gazebo’s website listed in the reference section at 

the end of this report. 

 
Figure 5 – FIU’s Gazebo virtual simulation environment depicting 

two rovers, a collection zone at the center, and AprilCubes 

scattered throughout the simulated competition environment 

3.2 Simulations 

The search algorithm chosen and implemented by the FIU team was 

initially identified as the most effective and simplest to translate 

given resource and time constraints. The final code developed is 

categorized as a univariate linearized search algorithm. The 

performance of this algorithm was tested against the NASA 

provided base code that resembles a random search pattern 

algorithm. The base code was found composed of a random number 

generator commanding the Swarmie robot to move in a randomized 

pattern with no goal or aim of sweeping a distinct area or path.  

Virtual testing and simulations were set up in the Gazebo 

environment discussed above. Conducting testing in the virtual 

platform would provide a reliable environment capable of 

simulating the Swarmies at Kennedy Space Center competition 

field. The largest consideration regarding the subject virtual 

simulations are that any simulations conducted in Gazebo represent 

optimal conditions compared to testing perform on the physical 

rovers.  

Optimal considerations include that the onboard instrumentation is 

performing as expected and no anomalies are encountered in the 

virtual environment. Comparing the two codes and search 

algorithms in this manner would allow for assessment of the 

performance gained over the base code without the need to consider 

physical robotic hardware performance at the simulation phase of 

the code development. In order to analyze the performance of the 

chosen search algorithm, the algorithm was translated into C-plus-

plus (C++ or Cpp) code in the search controller behaviors, and then 

tested against the random search algorithm provided by NASA as 

a starting point.  

The testing parameters were as follow: 10-minute simulations were 

run with three virtual rovers on a 15-meter by 15-meter field. 

Uniform and clustered configurations of AprilCube placement 

were utilized with the number of cubes increased over three runs. 

The testing was done with 32 and 64 resources as this proved to be 

the best number of AprilCubes allowed for the simulation to run 

without errors. The rovers started from the same position with each 

new trial and the cubes were placed in the exact same locations for 

every consecutive trial run to maintain comparable consistency. 

Using the plotted data from the GPS and odometer on the rqt-

interface, the total area covered by each rover was summed and 

recorded. Since the goal of the algorithm is to identify and retrieve, 

and each rover is capable of recognizing multiple cubes and tagging 

their location, the greater the amount area covered in the allotted 

time yielded better algorithm performance.  

3.3 Simulation Results 

Through multiple runs on the Gazebo virtual simulation 

environment, including the variations of multiple setups discussed 

above which include the random search algorithm and the 

univariate linearized search algorithm, the performance of FIU’s 

developed algorithm over the provided random search algorithm 

became evident. The more linearized search algorithm developed 

was capable of searched a wider area in the trial defined amount of 

time, when compared to the random search algorithm that provided 

by NASA, in all but one instance. The results of the field area 

covered by three Swarmie robots with two types of arrangements 

for the cube position, and a varying number of cubes are presented 

in Table 1. The below table represents the four scenarios set up that 

performed in the simulation.  

Table 1 – Search algorithm performance outcomes 

 

According to the outcomes represented in Table 1, the univariate 

linearized algorithm allowed for the rovers to each cover a higher 

amount of area in the allotted 10 minutes in all virtual simulations 

excerpt for the Clustered-32 trial. Based on the virtual simulations, 

the FIU team choose to utilize the univariate search algorithm 

developed. This algorithm showed the most promise considering 

additional functionality operations in need of development for 
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successful physical testing. Of the additional operations, the pickup 

controller function is among the most pertinent for successful 

retrieval of identified resources.  

IV. ROBOTIC INTEGRATION  

4.1 The NASA Swarm Robot – “Swarmie”  

The first task regarding integration to the physical platform 

undertaken was analyzing the provided Swarmie. Gaining a 

foundational understanding of how the individual components of 

the robot are laid out and function aided in code development and 

ensured the provided on-board equipment of the robotic system was 

undamaged and would function properly. Each Swarmie is 

equipped with ultrasonic sensors, a live-feed camera, a GPS, a 

compass, wheel encoders, a gripper claw assembly, and an inertial 

measurement unit. The Swarmie was assembled according the 

instructions provided by NASA and available on the competition 

website. 

  
Figure 6 – Front and left side views of the assembled Swarmie 

provided by NASA 

4.2 Computer Vision and Open CV 

Computer vision is a multidisciplinary field pertaining to computer 

capabilities for developing a powerful level of understanding from 

images and videos. OpenCV is an open source computer vision 

library equipped with hundreds of functions and algorithms for 

processing images and videos with support in C++ [5]. The 

OpenCV platform is utilized in the Swarmathon as means of 

recognizing the AprilTags on the AprilCubes and the collection 

zone or home base. OpenCV functions and algorithms use the live 

feed from the Logitech C170 camera mounted on each Swarmie. 

The camera feed is dependent on the limitations of this specific 

camera, as well as outside variables such as lighting and stability 

while the rover is in motion. The FIU team focused on exploitation 

of the provided code to merge an efficient algorithm with the 

OpenCV capabilities.   

The on-board camera is the eye of the robot and it is used to detect 

and recognize objects, specifically AprilTags and subsequently 

AprilCubes. The camera used in the Swarmie is pointing towards 

the ground at a 30-degrees from horizontal and works with internal 

software to detect and identify the AprilTags. This software was 

coded to detect a target at 0.65-meters in front of the robot’s gripper 

assembly. The figure above shows the relationships between the 

AprilCube and the Swarmie, and how the distance values to each 

were calculated. This calculation is based on measurements of the 

hypotenuse and adjacent, using the distance of target the camera 

detects as the hypotenuse and the adjacent is known as it is a 

physically measurable distance. The system works with OpenCV 

and Computer Vision to identify the AprilCubes and is an integral 

portion of the overall success related to resource retrieval 

performance. 

 
Figure 7: Camera and target identification with reference 

geometry depicted as red lines 

4.3 GPS - Global Positioning System  

A low-power consumption GPS chip can be found on board of each 

Swarmie. NASA has equipped them with the LEA-6 modules, 

capable of high performance per the u-blox 6-position engine.  The 

GPS utilizes the doppler shift in radio frequencies in determining 

lines of both position and location. Using triangulation from the 

information of at least 3 satellites, signals with time stamps are 

collected by the GPS and compared to the time it arrived in order 

to produce longitude and latitude coordinates. GPS bias is usually 

remedied by allowing clock errors as a variable, allowing the 

receiver to successfully locate the Swarmies position on Earth.  

4.4 Inertial Measurement Unit (IMU) 

The IMU unit on each Swarmie reports x, y, and z acceleration of 

the robot, as well as orientation using the magnetic north as 

reference. Exploitation of the onboard IMU will produce data that 

can be checked against other instrumentation data. The IMU data 

will also help limit the Swarmies’ speeds to values within the 

competition rules.  

4.5 Kalman Filters  

The collected data is checked through offset calibrations, which 

were physical values that can be double checked with the code for 

accuracy, and through the use of Kalman Filters. Kalman Filters are 

an optimal recursive data processing algorithm pertinent to 

continued function of the algorithm. The filter is capable of 

analyzing all the provided input from different sensors and returns 

optimized data that parallels the system’s needs. A graphical 

representation of the application for a Kalman Filter is as per the 

figure below.  
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Figure 8 - Common Kalman Filter Application 

V. METHODS 

5.1 Global Positioning System (GPS) 

The GPS was given extensive consideration while developing the 

Swarmies’ code. The location reference the GPS provided was 

essential in the design of the pattern the Swarmies will be taking. 

The GPS must take into account the location of the Swarmies to 

accurately map the patterns in which the other Swarmies move and 

where obstacles and cubes are located. The GPS is primarily 

utilized by calling a specified function to execute do-while loops 

that allows the Swarmie to move to locations using its GPS data. 

5.2 Encoders 

The FIU team implemented minimal changes to the provided wheel 

encoder program. Past FIU’s teams performed in-depth evaluation 

of the encoders related to the same design goals and provided 

information stating that the encoders were not an accurate 

information source. Reliance on the encoders made the robot 

perform incorrectly and produced excessive error when relying on 

the wheel encoder sensors for navigation. 

5.3 Compass 

The compass was implemented to work with the GPS and the 

search algorithm to calculate the current direction the robot is 

moving. The compass proved a vital tool for establishing pertinent 

information related to the Swarmie’s heading data. 

5.4 AprilCube Pickup and Drop Off 

The FIU team changed the pickup and drop-off code to work on a 

distance-based calculation and continuously used the GPS and 

odometer to calculate the rover’s current position while the camera 

was used to update the AprilCube position. The original pickup and 

drop-off sequence installed on the robot relied on a time-based 

countdown and control sequence where it would perform different 

actions based on how much time had passed. This method proved 

ineffective and failed during initial testing and was quickly 

abandoned for the method described above.  

The new method ensured the Swarmie was able to correctly identify 

and collect the targeted resource, and then not drop or lose control 

of the AprilCube on its way back to the collection zone. If dropped, 

the robotic code was constructed to tell the Swarmie to move back 

and search for the AprilCube in a 160- degree range from the last 

known location.  

VI. PHYSICAL TESTING 

6.1. Initial Configuration and Testing  

Testing was conducted to establish and understand the Swarmies’ 

capabilities and functionality after the search algorithm was 

developed and tested on the virtual platform. The testing of the 

Swarmies was conducted in FIU’s robotics lab in both the provided 

simulated environment using Gazebo as discussed above, and a 

mock course built in the robotics lab to execute physical tests and 

evaluate the results as discrepancies were anticipated between the 

virtual and physical simulations.  

The model course included the NASA specified home base, and 

replicas of the competition AprilCubes that featured printed 

AprilTags on six sides of the cube. Initial configuration of the 

Swarmie contained parameters that were interfering with other 

operations during the starting procedures. To resolve this, the FIU 

team conducted individual component tests or evaluations to check 

how sensitive each component was. The observable data was 

compared with the output data displayed on the rover rqt-interface. 

The rqt interface proved to be a crucial tool for evaluating physical 

performance. See the Figure 9 depicting a screenshot of the rqt-

interface. 

 
Figure 9 – Rqt-interface or rover interface  

6.2 Calibration 

Calibrations were performed for each component to increase 

accuracy. The calibration was done initially by testing the rover’s 

functions related to the onboard camera, GPS, and gripper 

functionality. To specifically determine the offset of the actual 

Swarmie, the distance was measured from the chassis to various 

points of the gripper, the chassis to the camera, the camera to the 

grippers and ground, various range of angles the camera could 

function, as well as the actual velocities that the Swarmie travelled. 

Appropriate comparisons were made between physical and code 

produced data. The FIU team placed AprilCubes at various 

distances and angles away from the rover. Camera and ultrasound 
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sensors stated values were recorded and compared to the actual 

known distances to determine at what values the camera and 

ultrasound should respond to and operate based on. 

6.3 GPS 

GPS testing was done by taking screenshots of the Rover interface 

(rqt-interface) displaying NAVSAT, ODOM, and position data 

produced by the physical rover during simulations. The position of 

the Swarmie was then changed after each trial and the testing was 

repeated. The results of all tests were compared to assess the 

accuracy and reliance of the GPS. While testing the GPS, the FIU 

team noticed that the rover’s reported location was not as accurate 

as initially anticipated. Further investigation led to the conclusion 

that the GPS hardware and software the robotic rovers utilize can 

produce up to a 5-foot margin of error.  

6.4 Compass 

Testing the compass was conducted by rotating the Swarmie while 

comparing the direction the Swarmie was reporting though the rqt-

interface with an actual compass in hand inside the robotics lab. 

The complete testing was done using 20-degree directional change 

increments and the results were compared. No significant 

discrepancies worth offsetting was noted during the compass 

evaluation.  

6.5 Wheel Encoders 

The wheel encoders were tested by measuring and marking the 

wheels of the Swarmies, then commanding it to move in a desired 

direction. Through the rqt-interface, the information provided by 

the operating Swarmie was noted and then compared with the 

known physical data information. 

6.6 Ultrasound Sensors 

Testing for the ultrasound sensors was done by placing an object in 

front of the Swarmies within recognizable distance to the sensor’s 

mounted location. A measurement was taken by hand to compare 

with the produced data representing the distance between the sensor 

and the object.  

VII. RESULTS 

7.1 GPS  

The position data taken by the algorithm is usually error prone, as 

each iteration of the GPS would locate the Swarmie at different 

positions within a specific range as the data is converted to x and 

y-coordinates on the world map coordinate. This can be appreciated 

by the rqt GUI interface map display as per the Figure 10, where 

the dots are GPS x and y-coordinates, and they propagate at a 

certain distance from the IMU and wheel encoders data. 

 
Figure 10 - IMU and GPS Graphical Data 

7.2 Ultrasound Sensors 

While testing the ultrasound sensors, The FIU team observed the 

calibration of the sensor was initially too sensitive and was finding 

objects from 5-feet away. The increased sensitivity caused the 

Swarmie to enter an evade mode as though it encountered an 

obstacle to avoid even though no obstacle existed.  

The ultrasound sensors were adjusted to a lower sensitivity that 

resulted in the Swarmie operating more predictably and as coded. 

The Swarmie no longer entered the evade mode after the 

adjustments were made. The adjustments subsequently allowed the 

Swarmie to identify and pickup AprilCubes as intended. The 

ultrasound sensitivity adjustment enabled proper function of the 

Swarmie and behavior as intended by the FIU coding team. 

7.3 Wheel Encoders 

It was concluded that noise picked up by the IMU and GPS, and an 

amount drift accumulated by the wheel encoders, facilitated 

unpredictable divergence from the intended path and caused the 

Swarmie to become lost or simply have inaccurate position data. 

The noise captured can be appreciated in the following figure, part 

of the rqt and GUI interface. The amount of noise and drift is 

displayed while running simulations and running code on the 

physical test Swarmies.  

 
Figure 11 - GPS and IMU GUI offset data 

The data gathered by the GPS, IMU, and Wheel Encoders was 

checked against each other and through the EKF (Extended Kalman 

Filter) and results showed that after filtering the data nearly 

represented the correct position of the Swarmie. The Extended 

Kalman Filter is a built-in option that FIU implemented at 

discretion. The FIU team decided to apply this utilized Kalman 

Filter due to its capacity to linearize.  
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7.4 Camera 

Although the image quality of the camera was an initial concern 

while the Swarmie was in motion, laboratory testing concluded this 

did not impede the Swarmie’s search and retrieve process. The FIU 

team was satisfied with the camera’s functionality after sufficient 

testing proved the images produced during slower movements were 

reliable and allowed for proper identification of AprilTags.  

7.5 AprilCube Pickup and Drop Off 

The adjustment from a time-based pickup to a distance-based 

pickup was an invaluable change implemented by the FIU team. 

When the Swarmie positively identified an AprilCube, it 

successfully completed the pickup function approximately 70% of 

the time on its first attempt and was observed to take a maximum 

of three attempts to retrieve the AprilCube as intended. 

Adjustments to the pickup and drop-off function over the provided 

base code resulted in better overall Swarmie performance. 

  
Figure 12 – Swarmies executing pickup and drop off functions 

during laboratory testing 

VIII. CONCLUSION 

The development of FIU’s implemented algorithm was a direct 

outcome of the physical constraints found through multiple testing 

iterations and time allowance. The team observed that the 

calibration of the rovers’ sensors was extremely important in the 

physical test as the results from the performance of the virtual 

simulations varied from the real-world testing of the rovers, as 

expected, as the Gazebo platform offers ideal testing conditions. 

Ultimately, the comparison of the base code provided by NASA 

and FIU’s univariate linearized search algorithm revealed 

improvements were made over the base code. The outcomes were 

sufficient to move forward with code development. 

FIU’s final approach to the search algorithm drew inspiration from 

two main sources, a biological approach derived from ant colonies’ 

behaviors and the linear motion of chess pieces on the game board. 

Using linearity, the rovers are coded to search all sections of a 

determined area as they attempt to move in straight patterns to 

cover the entire developed grid. This search algorithm was tuned 

through the rqt-interface as the rovers searched for the AprilTag 

resources in the laboratory test environment.  

Obstacle avoidance allows for the rovers to cover the entire grid 

and camera vision differentiates between an obstacle or AprilTag. 

The GPS and odometry package played an important role in 

improving the ability to retrieve AprilCubes and successfully place 

them in the home base. The Kalman Filters allowed for more 

reliable data from the GPS. The use of better performing hardware 

could increase the efficiency of the algorithm’s performance. FIU’s 

algorithm and improvements on the pickup control may be used in 

later editions of FIU teams participating in the NASA competition.  

A flowchart explanation and a corresponding description of the 

main functions of the search and retrieve algorithm developed can 

be viewed in the Appendix.  
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APPENDIX: FINAL CODE EXCERPTS AND DESCRIPTIONS 

Search Controller Flowchart: 

 

 

The flowchart representation of the FIU code shown above depicts the search algorithm. The concept behind the search algorithm was derived 

from the game of chess. The code programs the robots to create a grid based on search area. In the scenarios that were tested, the robots were 

already programmed to know what the grid size was and coincided with the competition grid. The robots were then able to move in a linear 

pattern that, between three rovers, would ensure the majority of the terrain was searched at least once. As such, the robot would first use the 

GPS to understand what it’s current location was and break the coordinates down into x and y values. The robot then was programed to move 

in the positive x-direction by creating a loop that would continuously move forward until an obstacle is detected and then would change 

directions and move in the positive y-direction. This process was repeated and tested numerous times and was determined that the robots 

were able to search the majority of the terrain as intended.  

  

Calculate Current Location

Create a loop that continuously 
moves in the +X direction

Obstacle detected & avoided

Creates a loop that continously 
moves in the +Y direction 

Repeats until target located



 
 

 

9 

 

31st Florida Conference on Recent Advances in Robotics May 10-11, 2018, University of Central Florida, Orlando, Florida 

 

 

Pickup Controller Flowchart:  

 

Above, the flowchart represents the FIU code used to retrieve a cube as shown. There were numerous methods tested including time-

dependent, position-dependent, sonar-dependent, and camera dependent. Ultimately, the code that worked the best and was used in the final 

application was one that combined position, sonar and camera to ensure successful retrieval. Once a cube or resource was identified, the robot 

would calculate the position of the cube using the hypotonus from the camera and the center of the chassis. Then the rover would create a 

loop recalculating the distance of the cube from the robot until a predetermined distance was reached. In this scenario, that distance was 

approximately 3.75-inches, which was the ideal location of the gripper to successfully retrieve the cube.  In order to ensure the robot stayed 

perfectly aligned to the cube, ultrasound was incorporated. Three sonar sensors were mounted above the gripper and below the camera 

allowing for the rover to detect objects to its left, center, and right. As such, the code was made so that once a cube was identified the robot 

would rotate either left or right so that the center sonar was the only one “blocked” indicating that the cube was directly in front of it. 

  

Target found

Calculates distance from 
chassis to target

Uses sonar sensors to align 
center of robot to target

Creates a step counter 
moving forward until 

specified distance is obtained

Stops at specified distance 
and attempts pick up of 

target
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Obstacle Avoidance Flowchart: 

 

The flowchart shown above represents the FIU code implemented for obstacle avoidance. In order to ensure the robots were capable of 

successfully navigating terrain that included obstacles, an algorithm was written named Obstacle avoidance. The algorithm was based 

primarily on the sonar sensors. The sonar sensors were capable of detecting objects farther away than the camera’s visibility could discern. 

In addition, since three sonar sensors were used the robots were also able to detect which direction the obstacle was located at and more 

accordingly. For example, if an obstacle was detected in the left and center sonar while the right sensor was clear, then the robot would rotate 

towards the right allowing the robot to clear the obstacle without difficulty.  Similarly, the robot would rotate to the left if the opposite 

scenario was presented. In the event that both the right, left, and center sensor detected an obstacle, the robot would “flip a coin” and then 

assign a value to heads and tail and move either right or left depend on the result. 

 

 

 

Obstacle detected 
using sonar

If Left sonar > 
Right sonar

Rotate to left & 
move forward

If Left sonar = 
Right Sonar

Flip a coin

If number return 
is 1 then rotate 

right 

If number return 
is anything else 

rotate left

If Right sonar > 
Left sonar

Rotate to right & 
move forward


