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ABSTRACT
In order for autonomous vehicles to safely navigate the road
ways, accurate object detection must take place before safe path
planning can occur. Currently, general purpose object detection
CNN models have the highest detection accuracies of any method.
However, there is a gap in the proposed detection frameworks.
Specifically, those that provide high detection accuracy necessary
for deployment but do not perform inference in realtime, and
those that perform inference in realtime but detection accuracy is
low. We propose Multimodal Fusion Detection System MDFS),
a sensor fusion system that combines the speed of a fast image
detection CNN model along with the accuracy of light detection
and range (LiDAR) point cloud data through a decision tree
approach . The primary objective is to bridge the trade-off between
performance and accuracy. The motivation for MDFS is to reduce
the computational complexity associated with using a CNN model
to extract features from an image. To improve efficiency, MDFS
extracts complimentary features from the LIDAR point cloud in
order to obtain comparable detection accuracy. MFDS achieves
3.7% higher accuracy than the base CNN detection model and is
able to operate at 10 Hz. Additionally, the memory requirement for
MFDS is small enough to fit on the Nvidia Tx1 when deployed on
an embedded device.

Keywords: Autonomous Vehicle Perception, Obstacle Detection,
Embedded GPU Computing, Convolutional Neural Networks, Sen-
sor Fusion

1. INTRODUCTION
Vehicles are an integral part of the world, interweaved in our
everyday tasks with the primary objective to provide point-to-point
transportation. They transport goods between factories, shipping
ports, stores, and also are a primary mode of transportation for
many populations of the world. Vehicles may be very beneficial;
however, their usefulness does not come without a cost. Every
year roughly 30,000 are killed and over 2 million are injured in
the US in automobile accidents [1]. Therefore, safety is a large
concern not only for government regulators but also for automotive
manufacturers. It is desired to have vehicles that are capable of
driving themselves, since they would never be distracted leading
to a significant improvement in vehicle safety. In 2005, Stanley
the robotic vehicle from Stanford University (Figure 1), under the
guidance of Sebastian Thrun won the DARPA Grand Challenge
[2]. This success sparked a surge in research and commercial
work towards the development of autonomous vehicles. This

Figure 1. Stanely, winner of the DARPA Grand Challenge in 2005
[2]

rush for autonomy was increased when Boss, from Carnegie
Mellon University won the DARPA Grand Urban Challenge in
2007 [3]. Most vehicles are now equipped with Advanced Driver
Assistance Systems (ADAS), such as Adaptive Cruise Control, that
are classified as National Highway Traffic Safety Administration
(NHTSA) level 1 or 2 autonomy (partial autonomy). However, one
of the challenges in designing level 4 or 5 autonomous vehicles
(highly or completely autonomous) is accurate perception in all
environments of the world around the vehicle [4].

At the heart of perception lies computer vision. The vehicle
must take in raw data from sensors such as cameras, LiDAR, and
RADAR and then process it to form a meaningful representation
of the world around it including object classification, detection,
and localization. These different modalities of data provide unique
benefits, but also have shortcomings and failure points. These
different streams of data must be analyzed in order to gather
important information from the environment around the vehicle in
order to be passed to later stages of the autonomy system such as
path planning.

A modern approach for object detection and classification is to
use a convolutional neural network (CNN). The CNN is passed
an image and will output a set of both bounding boxes and object
labels for each bounding box. The CNN learns which features to
extract by optimizing its convolutional kernels in order to form rich
representational power to detect and classify objects. This class
of algorithms yields high accuracy and generalizable detections.
However LiDAR data is able to directly reason with the 3D world
instead of a 2D projection of it. Directly manipulating 3D data
allows detections to be used for path planning in the next stage
of an autonomous vehicle, which would not be possible with the
2D detections of an image algorithm. Although LiDAR analysis
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would be useful because of its 3D reasoning, detection accuracy is
traditionally worse for LiDAR based algorithms than camera based
ones, making LiDAR only algorithms unsuitable for autonomous
vehicles [5].

In order to overcome the weaknesses of these independent modes
of data, it is possible to fuse the data. The two defining types
of data fusion between image and LiDAR data are decision and
feature level fusion. Both of these fusion techniques have their
own weaknesses, feature level fusion is difficult to find equivalent
representations for each type of data and decision fusion can
be less accurate as the system relies on both sets of features
independently. The benefits though are increased detection quality
over LiDAR only algorithms and 3D detections which can not
be obtained by monocular camera algorithms, thus making sensor
fusion algorithms the final output of an autonomous vehicle’s
perception system.

The purpose of this research was to develop MFDS to fuse
camera and LiDAR data in order to provide accurate, fast object
detection and classification. MFDS attempts to avoid large memory
consumption while still being accurate, and operate at close to
real time by using information from different types of sensors to
efficiently augment one another, rather than greatly increase the
computational cost of a single sensor for marginal benefit. The
target deployment platform for MFDS is the Nvidia Tegra series,
specifically the Tx1.

2. LITERATURE REVIEW
Convolutional Neural Networks (CNNs) have seen great success in
image classification [6][7][8][9][10]. CNNs have also proven suc-
cessful in a variety of other computer vision tasks including, but not
limited to, detection and segmentation [11][12][13][14][15][16].
Although classification, detection, and segmentation tasks are all
different, neural networks are called universal approximators and
are able to learn how to perform each of them with high levels of
accuracy [17]. Each task requires specific network architectures
for optimality, but due to their generality, many improvements to
CNNs in one task also prove to be improvements in the others.

By 2017, image classification had reached the necessary accu-
racy levels for real world performance; however, to be useful for
most applications, models would need to take up less memory and
perform inference faster. The first major paper to address this
problem of model deployment was MobileNets, which developed
an accurate, small, fast classification network and was shown
to perform well at transfer learning to more complicated tasks
[18]. MobileNets was based upon the idea of the depthwise
seperable convolution, which was shown to be nearly equivalent to
normal convolution. Depthwise seperable convolution is faster than
standard convolution because they are optimized for the General
Matrix to Matrix (GEMM) function call from within the cuBLAS
library of CUDA, which is utilized by the cuDNN library [19].
cuDNN is a library specifically dedicated to GPU implementations
of CNNs due to their high computational complexity, making them
intractable on standard CPUs.

Once classification networks had reached a high enough level of
accuracy, CNNs were applied to more complicated tasks such as
detection tasks. One such successful detection network is Single
Shot MultiBox Detector (SSD) [20]. Instead of only outputting a
class label, SSD outputs a list of detections where each detection
consists of a class label, a confidence, and the four coordinates of
a bounding box. SSD is a unified detection network meaning that
it performs a single pass through a network without using a Region
Proposal Network popularized by Fast and Faster RCNN [12][13].

Detections are outputted at different stages of the network because
the feature map size decreases as the layer depth increases, meaning
that larger objects will be outputted earlier on in the network since
their feature maps are larger.

In addition to camera, or image, based methods are LiDAR,
or point cloud, based methods for object detection. As range
sensors such as LiDAR have become more affordable and more
readily available, point cloud detection methods have increased in
popularity but are still not as accurate as image based methods
[21][22][23][24][25][26]. Unlike image methods which are almost
entirely handled by deep learning methods, LiDAR methods utilize
both modern deep learning techniques and traditional hand crafted
feature extraction methods. This is largely due to the computational
complexity of 3D convolution, making it difficult to form CNNs for
a LiDAR point cloud. Therefore CNN algorithms that operate on
LiDAR data typically perform some sort of projection or form a
2D representation of the point cloud which 2D convolution can be
applied to.

There are also fusion based methods which take multiple modes
of data as input and output detections similar to the camera and
LiDAR methods previously mentioned. These fusion methods can
generally be grouped into two classes, feature fusion and decision
fusion. Feature fusion methods generally involve projecting the
LiDAR point cloud into a 2D space and then processing both
the image and the projection with some sort of CNN in order
for the learned features that are extracted from both mediums to
compliment one another [27][28][29]. The other group of fusion
algorithms are decision level fusions, which perform independent
detections in both mediums and then combine both sets of detec-
tions together in order to output a single set of superior detections
[30]. The idea behind fusion methods is to utilize the advantages
of each type of data to augment one another in order to provide
superior detection quality over each independent medium alone.

3. METHODOLOGY
The proposed Multimodel Fusion Detection System (MFDS) is
a decision-feature fusion, seen in Figure 2. At the start of the
algorithm, an image based CNN performs detection to output a set
of possible objects represented as bounding boxes with classes and
probabilities. After which, the synchronized point cloud is masking
to the same viewing angle’s as the camera, the ground plane is
removed, the cloud is transformed into the camera coordinates,
and the remaining points are separated into clusters based upon
Euclidean distance. Then, image detections and clusters are
associated and paired together. Next a vector of hand selected
features is extracted from the cluster of each pair, if there are
any, and run through a Multi-layer Perceptron (MLP) to regress
class probability, object length, distance to the object’s center, and
orientation of the object. The pairs confidence’s are adjusted, or
could potentially be removed, based upon the output of the MLP.
The output of the fusion algorithm are confident 3D localized
detections.

3.1 Creation of Fusion Models
The first step was acquiring a pretrained image detection CNN
model, specifically SSD, and then performing transfer learning on
the SSD model to be fine tuned on the KITTI dataset [5]. The
KITTI dataset was split to create training and validation sets, out
of the 7481 images and point clouds, 5611 were used for training
and 1870 were used for validation. Next, the LiDAR processing
pipeline was built up to the feature extraction of identified clusters
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Figure 2. System Diagram for the operation of MFDS

stage. A converted LiDAR dataset was then created by running
every LiDAR point cloud in the KITTI dataset through the pro-
cessing pipeline to extract features of every cluster, which were
then compared to KITTI’s labels and saved to disk if they matched.
After the converted dataset was formed, the classifying MLP was
built and trained.

3.2 Feature Extraction
After point cloud clusters had been formed, the last step before
the MLP was to perform feature extraction. The features that were
decided upon was the sample mean and standard deviation of the
clusters x, y, and z coordinates, ranges for all 3 dimensions, as
well as ratios of x to y, x to z, y to x, y to z, z to x, and z to y.
Although these ratios were redundant and included inverses, they
proved to be beneficial as the MLP did not learn as well if some
were removed. It is believed that this is because this redundancy
slightly reduced the complexity of the nonlinear decision boundary
that the network needed to learn.

These features were chosen because they represent important
geometric information about the point cloud cluster while being
computationally cheap to compute. The geometric data of the
point cloud is used to augment the color intensity data stored in
the camera image.

3.3 Dataset Creation
After the LiDAR point cloud pipeline had been created, the dataset
needed to be created. To form the dataset, each point cloud in the
separated training portion of KITTI was processed with the same
pipeline that was used during inference, which included masking,
ground plane extraction, transformation, and clustering. Each
cluster was checked against each labeled cuboid to determine if that
cluster represented one of the labeled objects. Since the labels were
not perfect, a cluster was considered a labeled object if no more
than 5% of the points existed outside the label cuboid. In addition
to the KITTI labels of Vehicle, Pedestrian, or Cyclist, clusters with
no class label were included in the final dataset in order for the
network to learn to be able to reject objects that were not relevant,
which meant that the MLP would output a score for four classes
instead of three. Therefore, the final classes used were Don’t Care,
Vehicles, Pedestrians, and Cyclists. In total there were 17,382 point
clouds, 17% was other, 69% was vehicles, 10% was pedestrians,
and 3% was cyclists, seen in Figure 3. Therefore, cyclists were
the most difficult class to classify since they had the least number
of training examples. After the datasets clusters were identified,
each cluster had their features extracted and their class, distance to

Figure 3. Class Representation in the created MLP Cluster Dataset

center, length, orientation, and features saved to disk. 75% of the
point clouds were used for training and the remaining 25% were
used for validation.

3.4 Mutli Layer Perceptron Architecture
The MLP to classify point cloud clusters was built in Python with
the Tensorflow library. The MLP’s jobs were to predict the class
of the object’s cluster, the distance to the center of the object from
the LiDAR sensor’s origin, the size of the object along the z axis,
and the rotation of the object given the cluster’s features and the
trained model. The class probability distribution is an unknown
nonparametric distribution. The MLP is used to form an estimate of
the posterior distribution given the trained model and input feature
vector. The class probability is mathematical stated in Equation 1.

P̂(Ci|fi,Θ) (1)

Ci represents the class probability for the ith feature vector and
Θ represents the trained MLP model parameters. The distance to
the center of the object, zi, the size of the object, li, and the rotation
of the object, αi, are all estimated values.

The MLP needed one output layer for every value that needed
to be regressed, therefore the MLP had four different output layers.
The MLP architecture is seen in Figure 4 but should be noted that
the nodes are not draw to scale according to their size. The input
layer for the feature vector had a size of 15 since that was the length
of the feature vector, the class output layer had a size of 4 to be able
to regress each class probability, and distance, size, and rotation
layers each had a size of 1.

The number and shape of the MLP’s hidden layers needed to be
determined. The number of layers tested varied from 1-7 and the
number of neurons in each layer was varied between 10-200. The
hidden layer configuration that converged to the best accuracy had
a single hidden layer with 150 neurons.

A truncated normal distribution with a standard deviation of
.01 was sampled from to initialize all parameters. As is standard
for detection networks, the distance, length, and rotation was not
predicted outright, an encoding was used instead. The entire dataset
was analyzed and the maximum distance was 50m as was the
maximum length. The maximum length was this large because
of random clusters that were included in the dataset. Therefore,
the distance and length did not need to be predicted but instead an
encoding was predicted, which was easier for the network to learn.
In addition, the rotation value can only assume values between −π

and π so the natural scaling factor used was π . The encodings are
seen below:
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Figure 4. MLP Network Architecture

φ(zpred , lpred ,αpred) =

[
zpred

50
,

lpred

50
,

αpred

π

]
(2)

The activation function that was used for the hidden layer was a
rectified linear unit (RELU), the class output layer was a softmax,
the distance and length output layers were both sigmoids, and the
rotation layer was a hyperbolic tangent [7]. The class layer used
the softmax to squash all class probabilities between 0 and 1 and to
make the sum of the probabilities equal 1. The distance and length
layers used the sigmoid because the predictions fell between 0 and
1 since neither of the values could be negative and also the scaled
value could never be over 1. The rotation layer used a hyperbolic
tangent since the values fell between -1 and 1.

3.5 Training
In order to train the MLP to regress all four values simultaneously,
a multi-part loss function was created. The total loss would be
the summation of a weight regularization penalty term, Lreg, the
weighted class error, Lclass, and the weighted distance, length, and
rotation errors, Ldist , Lsize, Lrot , respectively. The final multi-part
loss equation can be seen below:

L = Lreg +
1

Ntotal

Ntotal

∑
i=0

(λclassLclass)+ (3)

1
Ncare

Ncare

∑
j=0

((λdistLdist)+(λsizeLsize)+(λrotLrot)) (4)

Lclass was Cross Entropy Loss and Ldist , Lsize, and Lrot were
Smooth L1 Loss or Huber Loss [?]. Lreg was the summation of
the l2 norm of all trainable parameters with decay value of 0.001.
Finally, λclass = .8, and λdist = λsize = λrot =

1−.8
3 . The class loss

weight, λclass, was set higher than the other three weight terms as
that output was the most important and needed to be emphasized to
learn to the highest degree of accuracy possible. Ntotal is the total
number of training examples per batch and Ncare is the number of
training examples that do not have a Don’t Care class label. The
reason why the summations were over Ntotal and Ncare and not the

Figure 5. MLP Total Loss

same is that there were no labels for length, size, or rotation of the
clusters that were labeled Don’t Care. Therefore, the Don’t Care
terms in the summation needed to be avoided when computing loss,
which would impact the gradients and degrade the performance of
the MLP.

The batch size was set to 12 on each GPU so there was an
effective batch size of 36, since three GPUs were used. The net-
work was trained for 50,000 iterations. Both Nesterov Momentum,
with learning rate of 0.1 and momentum of 0.9, and Adam were
tested; however, Adam converged to a higher class accuracy and
was therefore used. The Total Loss during training can be seen in
Figure 5.

Due to the unknown shape of the error surface, the MLP
accuracy was extremely sensitive to initial conditions used for the
learnable parameters. Since the MLP was so sensitive, the network
was trained 75 times and the network that scored the highest
classification accuracy on the validation set was selected to be the
final network.

3.6 Association Problem
In order to perform the fusion algorithm after trained models were
created for the image detection CNN and LiDAR classifying MLP,
image detections and clusters needed to be associated together due
to potentially noisy sensor readings detecting the same object. The
projection matrix from 3D LiDAR space to 2D camera image space
is provided for every timestep in the KITTI dataset. The projection
matrix allows to compute the pixel location for each 3D point
within the cloud, seen in Figure 6. The projection can be computed
in the following way:

u
v
1

= P


x
y
z
1

 (5)

P ∈ R3,4 (6)

After the matrix multiplication had been computed, the output
vector needed to be normalized by the last element and the
projection from 3D LiDAR to 2D camera image space. After
the projection had been developed, clusters mean x, y, and z
coordinates were projected into image space, along with forming
the centroids of each of the CNN detection’s bounding box. With
the two sets of projected cluster centroids and bounding box
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Figure 6. Example LiDAR Projection to Image Pixel Space, [31]

centroids, a simple Euclidean distance comparison in pixel space
was performed. Any pair of centroids that were under a certain
threshold were considered to to be a pair of the same object. The
threshold that was used was 75 pixels due to the large variance of
the cluster centroid’s means.

3.7 Confidence Adjustment
After each pair’s cluster had been classified, a check was performed
between the pair’s image detection class and cluster classification
class. If the classes were not the same then the detection was
eliminated, however if the classes were the same then the detections
confidence was increased by 50%. The class probability was
normalized afterwards. This confidence adjustment allowed for
uncertain image detections, which would be eliminated, to gain the
required confidence to be considered true detections.

3.8 MFDS Deployment Details
The fusion algorithm was jointly implemented in Python and C++
using ROS as the communication and build platform. ROS serves
multiple purposes in this code; first to allow for messages to
be passed with between the two languages, second for the use
of powerful debugging tools such as topic monitoring and it’s
visualization package RVIZ, and third because MFDS needs to be
easily deployable on robotic systems [32].

MFDS requires two ROS nodes to operate concurrently, seen in
Figure 7; the first of which is a Python node to perform image
detection and the second is a C++ node to perform point cloud
manipulation, classification, and fusion. The Python node is
subscribed to a Compound Data Message (CDM) containing both
an image and a synchronized point cloud. Once the CNN fin-
ishes computing detections, another compound message is formed
containing the detections and the CDM, which is published to the
C++ node. The C++ node performs all point cloud preprocessing,
cluster formation, cluster detection pairing, feature extraction,
feature classification, and fusion. The output of the C++ node is
the final set of fused 3D localized detections. Python was chosen
for the image detection CNN because of Python’s easy access to
the Tensorflow library, eliminating the need to write the network
inference code. C++ was chosen for the fusion node because PCL
only operates in C based languages.

Since the LiDAR classifing MLP was trained with Tensorflow
in Python, but inference was performed in C++, the MLP needed

Figure 7. Fusion Algorithm’s Compute Graph

Figure 8. MLP Accuracy

to be ported over to C++ [33]. Since the network involved no
convolutions and only a simple MLP, the cuDNN library did not
need to be called. A MLP is a series of matrix multiplications
followed by nonlinear activation functions so naturally an efficient,
large scale matrix multiplication library was required. cuBLAS was
decided upon over Eigen due to the size of the matrices that needed
to be multiplied. cuBLAS is a library of CUDA that operates
similarly to the Basic Linear Algebra Subprograms (BLAS) library
in C++; however, cuBLAS performs the same operations on a GPU
instead of a CPU. The cuBLAS function call Sgemm that is used
to implement the MLP is the same function call that MobileNets
optimized their depthwise seperable convolutions around [18].

4. RESULTS

4.1 LiDAR Cluster MLP
The MLP was able to learn to classify each cluster with 90%
accuracy, on average, without the need for a complicated feature
extraction method. The MLP struggled with classifing the nothing,
or Don’t Care class, as well as cyclists. It is believed that
classifying the nothing class was difficult due to the large variance
in shapes and sizes, making it difficult for the network to form a
relationship between the high variance features and the class label.
Cyclists were difficult to classify due to the relatively low number
of training examples to learn from.

All distance, length, and rotation errors presented are after
rescaling the MLP’s outputs and labels back to dimensional values
from their nondimensional outputs. The MLP output of predicted
distance to the object had a Mean Square Error (MSE) of 1-2
square meters, which is a much better predictor than the centroid
of the cluster (MSE of 39.52 square meters), but not an optimal
value. The MLP distance prediction is an order of magnitude
more accurate than the naive analysis of the point cloud. The
length of the object’s prediction had an MSE of approximately a
quarter of a meter squared when the average length of vehicles,
pedestrians, and cyclists were 18.3 meters. Unlike distance, there
is no easy way to predict object length or rotation without making
strong assumptions about each class’s shape. Therefore, the MLP
provides access to reasonable predictions for these values very
quickly at the expense of some accuracy.
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Figure 9. MLP Output MSEs

As the MLP was progressing through its 75 separate training
initializations, the network appeared to converge to only three
different levels of accuracy. It became apparent that these three
levels of accuracy were proportional to each classes representation
in the dataset. The network would converge to roughly 79%, 87%,
or 90%. The networks that converged to 79% had not learned how
to predict pedestrians or cyclists and instead only predicted class
labels of vehicles and nothing since they made up the majority of
the training examples. 87% convergence represented not learning
cyclists and 90% represented learning how to predict all classes.
This theory was tested by tallying each of the outputs of the test
set and it was confirmed that the network never outputted the
corresponding class labels.

4.2 MFDS and Image Detection CNN
Testing was performed on the remaining 1870 images and point
clouds that were set aside in the test set. The image only detection
method was analyzed in order to see how well the primary SSD
model, as well as the RFCN and FRCNN reference models,
performed on the KITTI dataset, as well as to act as a benchmark to
see how much improvement MFDS provided. The KITTI dataset
uses the mean Average Precision (mAP) metric for reporting results
and is computed by finding the area under the precision recall
curve. KITTI defines a true positive as a detection that scores over
70% IOU for cars and 50% for pedestrians and cyclists. However,
mAP is a poor indicator of MFDS’s detection quality since it is
dependent on how many detections an algorithm can output.

Recall is a measure of how completely the detector’s output
detection set covers all labeled objects, while precision is a measure
of how few incorrect detections are in the output set. Recall is
largely dependent on how many detections a detector can output,
generally in the range of 10 to 300 [34]. This variable number
of detections, at varying confidence levels, allows for increased
recall. As more detections are outputted, the likelihood of covering
all labeled objects increases. MFDS operates in direct opposition
to the idea of a variable number of detections with different
confidence levels and works to only output as many detections
as necessary, each with high confidence. This difference in
output ideology means that recall is not a good evaluation metric
for MFDS and as a result, neither is mAP. As the few high
confidence outputs of MFDS are used to compute the systems
recall, the precision recall curve drops to zero when there are no
more available detections to cover the labels. Therefore a more
applicable metric to evaluate the improvement of MFDS over the
base SSD image detection CNN was used.

In order to determine the viability for deployment of the image
detection CNN model, three main metrics were considered; the

RFCN FRCNN SSD MFDS
CPU Memory (GB) 2.592 2.816 1.824 2.176
GPU Memory (GB) 1.962 7.876 0.554 0.703
Inference Time (s) 0.073 0.54 0.0167 0.1083

Adjusted Accuracy (%) 58.11 57.84 37.18 40.89

Table 1. SSD Results in MFDS

memory footprint on the CPU and GPU, the inference time, and
our own accuracy metric called adjusted accuracy. We define
Adjusted accuracy, Equation 7, as the percentage of accurate
detections with a penalty for incorrect detections, divided by the
total numbed of labeled objects. In addition to these three metrics,
it was beneficial to view the distribution of different types of
detections in order to see the room for improvement that MFDS
could add. The different types of detections were based upon
varying combinations of confidence and correctness. Correctness
was defined as the detection predicting the correct class with
appropriate IOU. Confidence was defined as the confidence MFDS
had in the detection’s class, and a miss was defined as the detection
CNN placing a detection around no labeled object. MFDS’s
main objective was to reduce the number of unconfident but
correct detections and also reduce the number of confident misses.
Therefore, MFDS is best suited to be used in conjunction with
a CNN detection model that has a high number of unconfidently
correct detections, a high number of confident misses, and performs
inference at a high rate of speed.

Adjusted Accuracy =
True Positives−False Positives
True Positives+False Negatives

(7)

The command line tool nvidia-smi was used to find each model’s
GPU memory consumption and the command line top was used
to find each model’s CPU memory consumption, which included
all memory required by the process. The memory consumption is
much larger than the size of the trained models because the memory
consumption includes the amount of memory for storing temporary
values and all additional required libraries for performing infer-
ence.

The SSD model was chosen for its small memory footprint,
fast inference time, and ideal detection type distribution. Roughly
11% of SSD detection’s fell within the categories of unconfidently
correct and confidently incorrect, seen in Figure 13, as the targeted
types of detections for MFDS to eliminate. MFDS takes the
small, lightweight SSD model and increases the confidence of it’s
detections in order to output high confidence, correct detections
with a minimal increase in memory demands, while still being able
to operate at 10 Hz, seen in Table 1. Figures 10, 11, and 12 show
that MFDS increases the confidence of detections that are able
to become confident enough to become final detections. MFDS’
output is 96% high confidence, correct detections, which is roughly
a 50% improvement over the base SSD model, seen in Figure 13.
MFDS suffers from a slight, roughly 0.8%, increase in confidently
incorrect detections and misses. With the increase in the number
of confident detections, MFDS was able to increase the adjusted
accuracy by 3.7%. A comparrison to the popular RFCN and Faster
RCNN models are supplied in Table 1.

In order to evaluate the inference speed of MFDS, each function
in MFDS was timed, shown in Table 2. Cluster formation took
up roughly half of the entire MFDS inference time with the other
half evenly spread out amongst the other functions. Although the
MFDS processing is roughly as fast as the RFCN and faster than the
FRCNN inference time, they are not directly comparable because
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Figure 10. SSD to MFDS Comparison; MFDS above, SSD below

Figure 11. SSD to MFDS Comparison; MFDS above, SSD below

Figure 12. SSD to MFDS Comparison; MFDS above, SSD below

Figure 13. SSD Model Detection Type

Task Time (s)

CNN .0167
Masking 0.014

Segmenting Ground Plane 0.009
Coordinate Transform 0.015

Cluster Formation 0.039
Detection/Cluster Association 0.001

Feature Extraction 0.0004
Classification 0.008

Confidence Adjustment 0.0001

Total 0.1083

Table 2. Time Analysis of MFDS Inference

Figure 14. Occluded Objects from the Image Viewpoint

the CNN detection models operate on the GPU and MFDS operates
on the CPU and GPU with non optimized functions.

One of the main sources of error in MFDS proved to be the
detection-cluster association. A known problem is when objects
appear very close to one another, their bounding boxes will be
nearly on top of one another and will be erased by NMS [35].
MFDS is very susceptible to this problem due to the way it
associates detections and clusters together. An example of this can
be seen in Figures 14 and 15 where a cyclist partially occludes a
pair of pedestrians. There is only a single bounding box after NMS,
due to their high IOU, however, there are two different clusters that
are paired with it, visualized as the pink and blue points in Figure
15. There will be two final detections with the same bounding box,
but with different 3D localized values which, by KITTIs definition,
is one true positive and one false positive since labels can only have
one detection after which all detections are considered errors.

Another source of error for MFDS was the false positive de-
tection rate due to confident misses. Since many clusters are
generated from a point cloud and are then paired with image
detections with MFDS’s association method, non object clusters
make it to the cluster classification stage. The classifying MLP
has a classification accuracy of 90%, which means that for every
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Figure 15. Occluded Objects from the Point Cloud Cluster Viewpoint

Figure 16. False Detection Much Higher than Ground Plane

non object to reach the MLP, 10% will be viewed as confident
detections due to false cluster classification and a poor confidence
image detection. An example of this can be seen in Figure 16 where
the treetop canopy’s cluster is falsely detected as a car.

5. CONCLUSSIONS
An object detection system for autonomous vehicles was discussed
in this article. MFDS was able to increase the adjusted accuracy
by 3.7% over SSD while providing detections at 10 Hz. This
increase in adjusted accuracy was achieved by changing uncon-
fident into confident detections by performing an analysis on the
corresponding point cloud cluster. MFDS performed inference
comparably or faster than the reference CNN image detectors, takes
up significantly less memory, and provided 3D localized detections.
MFDS was able to take unconfident detection proposals from the
image CNN and use LiDAR data to add enough confidence for
the detection proposals to be considered true detections. MFDS
was a step towards a deployable object detection system for
autonomous vehicles. It fused information from multiple sensors
to produce outputs directly usable by the path planning module of
an autonomous vehicle. Although there are limitations to MFDS;
the benefits and information that MFDS produces outweigh the
problems it faces.
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