Enabling high-order integration of fatigue crack growth with surrogate modeling

Matthew J. Pais, Felipe A.C. Viana, Nam H. Kim

1. Introduction

Modeling fatigue crack growth is computationally challenging because the crack growth rate can only be evaluated at the current crack size. Therefore, the forward Euler method has been a common choice in integrating fatigue crack growth. However, since its accuracy can only be guaranteed with a small step size, the method cannot be applied to the investigation of systems with complex geometry (calling for expensive finite element simulations). Higher-order integration methods, such as the mid-point method, allow larger step size but require evaluation of crack growth rate at crack sizes larger than the current one. In arbitrary geometry, this is not an easy task because the direction of crack growth is unknown in advance. In this paper, surrogate models are generated for the prior crack growth direction and stress intensity factor data. These surrogates are cheap to evaluate and predict the crack growth rate without the need of additional finite element simulations. The step size for the numerical integration is chosen based on the accuracy of the extrapolated crack growth predictions for direction and stress intensity factor. Several examples were tested in which crack growth follows linear and curved paths under a range of boundary conditions leading to different relationships between stress intensity factor and crack size. Results showed that a large increase in the allowable step size may be used with increased accuracy over the Euler method with the need for fewer expensive function evaluations.
Second, a variable step size algorithm is introduced for the auto-
Fig. 1. The relationships between stress intensity factor range
approximations as the midpoint method could be used to
to address this issue, but such methods require additional function
evaluations needed for slope computation (besides increased
computational cost such computations cannot be done at the
present integration step. After all, the crack geometry is known
only up to that point).
This paper, propose the use of surrogate models to enable such
higher-order integrators. Surrogate modeling (also known as meta-
modeling or response surface approximation) consists of analyzing
a number of designs, fitting a surrogate, then replacing the costly
simulations by the surrogate model [12–15]. The basic idea is to
use the history of stress intensity factors as a function of either
number of cycles or crack lengths up to the current cycle to build
a surrogate model and predict the stress intensity factor at differ-
ent crack sizes or different cycles. New data points can be added to
the original set as the simulation evolves and more data points are
available for the surrogate model.
Here three cases are considered. First, for a fixed increment of
crack growth Δa (or a fixed number of elapsed cycles ΔN), the
relationship between ΔK and Δa is fitted using a kriging surrogate.
Second, a variable step size algorithm is introduced for the auto-
matic generation of a step size Δa (or ΔN) based on the accuracy
in the surrogate extrapolation of ΔK and the crack growth direc-
tion. This is an attempt to only perform expensive function evalu-
ations when needed. Third, the case of mixed-mode crack growth
is considered and the use of a surrogate model enables approxima-
tion to the crack growth direction.
Two examples with known relationships between ΔK and a are
used to illustrate how the proposed methodology enable accurate
high order integration: a center crack in an infinite plate under
uniaxial tension and an edge crack in a finite plate. In another
example, the extended finite element method is used to model
mixed-mode crack growth for an inclined center crack in a finite
plate and an edge crack in a finite plate with a hole. The results
show that kriging enables large step sizes without sacrificing
accuracy.
The remainder of the paper is organized as follows. In Section 2
the crack growth model is introduced which consists of the fatigue
crack growth model, traditional solution procedures, equivalent
stress intensity factor range for mixed-mode loading, and crack
growth direction. In Section 3 the use of a surrogate model for
higher-order integration is introduced along with a variable step
size algorithm based upon the agreement between the surrogate
predictions and function evaluations. In Section 4 three numerical
experiments are conducted to test the proposed algorithms for a
several crack geometries, initial crack sizes, and materials. Finally,
in Section 5 conclusions are drawn about enabling higher-order
integration through surrogate models.

2. Crack growth model

2.1. Fatigue crack growth model

One of the first attempts to create a model to represent fatigue
crack growth was that of Paris [16]. Many modified versions of the
Paris model attempt to address areas which the Paris model ne-
eglects such as crack closure [1,17,18], stress ratio R [19–21], and
the threshold stress intensity factor [1,21–23]. Other models in-
clude the state-space model [24,25] and the small time scale model
[26] which have an emphasis on modeling variable amplitude

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_k</td>
<td>target percent error in kriging surrogate for ΔK</td>
</tr>
<tr>
<td>a_t</td>
<td>target percent error in kriging surrogate for θ</td>
</tr>
<tr>
<td>a_N</td>
<td>crack length at cycle N</td>
</tr>
<tr>
<td>K_I</td>
<td>Mode I stress intensity factor</td>
</tr>
<tr>
<td>K_{II}</td>
<td>Mode II stress intensity factor</td>
</tr>
<tr>
<td>N_i</td>
<td>cycle corresponding to current crack geometry</td>
</tr>
<tr>
<td>$N_{i+1/2}$</td>
<td>cycle corresponding to midpoint between current and next crack geometry</td>
</tr>
<tr>
<td>N_{i+1}</td>
<td>cycle corresponding to next crack geometry</td>
</tr>
<tr>
<td>a_N</td>
<td>rate of change in ΔN_{i+1} due to a_i</td>
</tr>
<tr>
<td>Δa</td>
<td>crack growth increment</td>
</tr>
<tr>
<td>ΔK</td>
<td>stress intensity factor range</td>
</tr>
<tr>
<td>ΔK_I</td>
<td>stress intensity factor range at cycle N_i</td>
</tr>
<tr>
<td>ΔK_{II}</td>
<td>stress intensity factor range at cycle $N_{i+1/2}$</td>
</tr>
<tr>
<td>ΔK_{III}</td>
<td>stress intensity factor range at cycle N_{i+1}</td>
</tr>
<tr>
<td>ΔK_{NUM}</td>
<td>stress intensity factor range at cycle N_{i+1} from numerical method</td>
</tr>
<tr>
<td>ΔK_{SUR}</td>
<td>stress intensity factor range at cycle N_{i+1} from surrogate model</td>
</tr>
<tr>
<td>ΔK_{eq}</td>
<td>equivalent stress intensity factor range</td>
</tr>
<tr>
<td>K_{eq}</td>
<td>Mode I stress intensity factor range</td>
</tr>
<tr>
<td>K_{II}</td>
<td>Mode II stress intensity factor range</td>
</tr>
<tr>
<td>ΔN</td>
<td>number of elapsed cycles</td>
</tr>
<tr>
<td>N_i</td>
<td>number of elapsed cycles between cycles N_i and N_{i+1}</td>
</tr>
<tr>
<td>ΔN_{i+1}</td>
<td>number of elapsed cycles between cycles N_{i+1} and N_{i+2}</td>
</tr>
<tr>
<td>θ</td>
<td>crack growth direction in crack tip coordinate system</td>
</tr>
<tr>
<td>θ_{NUM}</td>
<td>stress intensity factor range at cycle N_{i+1} from numerical method</td>
</tr>
<tr>
<td>θ_{SUR}</td>
<td>stress intensity factor range at cycle N_{i+1} from surrogate model</td>
</tr>
</tbody>
</table>
loading. For simplicity, the Paris model is used within this paper, but the principles could be applied to any crack growth model governed by an ordinary differential equation. The Paris model is given as

$$\frac{da}{dN} = C(\Delta K)^m$$ \hspace{1cm} (2.1)$$

where \(da/dN \) is the crack growth rate, \(C \) and \(m \) are model parameters, and \(\Delta K \) is the range of Mode I stress intensity factor. An analytical solution of Eq. (2.1) is available for the simplest case that is an infinite plate under Mode I loading. Other cases require numerical integration in order to calculate the crack growth as a function of fatigue loading cycle \(N \).

The solution of Eq. (2.1) with respect to modeling crack growth with finite element simulations has taken two main approaches. First, a fixed crack growth increment \(\Delta a \) can be considered. Once the simulations have completed, the relation between \(\Delta a \) and \(\Delta N \) can be used to find the corresponding \(\Delta N \) for each function evaluation. For a fixed increment of elapsed cycles \(\Delta N \) can be considered. Here, for a given crack geometry \(\Delta a \) is approximated based on the selected \(\Delta N \) and the current function evaluation’s prediction of \(\Delta K \). Either method is capable of yielding an accurate representation of the fatigue crack growth behavior for a given structure, should an appropriate step size of \(\Delta N \) be chosen. Second, an automated variable step size algorithm has been introduced to distribute the simulations in a controlled manner with the goal of reducing the number of simulations needed without a loss in accuracy.

When there are nonzero Mode II stress intensity factors present, it is necessary to consider an equivalent stress intensity factor range as well as a direction of crack growth. There are many ways to find an equivalent stress intensity factor range \[23,27-29\]. Here the method proposed by Tanaka [28] is used:

$$\Delta K_{eq} = \sqrt{\Delta K_I^4 + 8\Delta K_{II}^4}$$ \hspace{1cm} (2.2)$$

where \(\Delta K_I \) and \(\Delta K_{II} \) are the ranges of Modes I and II stress intensity factors, respectively.

The direction of crack growth can be found from many methods \[3,4,23,30-34\], but here is assumed to be the direction which will maximize the opening Mode I stress intensity factor. This angle for any combination of mixed mode loading consisting of Modes I and II is given by the maximum circumferential stress criterion \[3\] as

$$\theta = 2 \arctan \left(\frac{1}{2} \cdot \frac{K_I}{K_{II}} \cdot \text{sign}(K_{II}) \sqrt{\left(\frac{K_I}{K_{II}} \right)^2 + 8} \right).$$ \hspace{1cm} (2.3)$$

Note, that this is in essence an Euler approximation to the crack growth direction as it only considers the stress intensity factors at the \(i \)th data point. As mentioned before, when the geometry of the plate is finite and the applied load generates mixed mode, it is not easy to calculate \(\Delta K_{i+1/2} \). This requires building a finite element model with the crack geometry at \(i + 1/2 \). However, without knowing the crack geometry at \(i + 1/2 \), it is not possible to evaluate \(\Delta K_{i+1/2} \). Thus, except for the forward Euler method, some kind of approximation should be adopted to estimate the range of stress intensity factors at the advanced location. In the following section, a surrogate modeling technique will be presented to approximate the range of stress intensity factor as well as the crack growth direction allowing for a midpoint approximation to be applied to both the magnitude and direction of crack growth for a given crack through the use of surrogate modeling.

2.2. Numerical integration of the fatigue crack growth model

2.2.1. Forward Euler method

For an arbitrary differential equation of the form \(y'(x) = f(x, y(x)) \) the goal is to predict the value of \(y_{n+1} \) while the current data is available up to \(y_n \). The simplest numerical method available which is applicable to the current crack growth problem is the explicit forward Euler method \[10\] given as

$$y_{n+1} = y_n + hf(x_n, y_n)$$ \hspace{1cm} (2.4)$$

where \(h \) is the step size from \(x_n \) to \(x_{n+1} \). Note that \(f(x_n, y_n) \) is the slope of \(y(x) \) at \(x_n \); therefore a linear approximation is being made from \(x_n \) to \(x_{n+1} \) using the slope at the \(x_n \). This method has been popular in engineering applications because it only requires evaluating the slope at the current step, which often required expensive computational simulation. For example, in the case of crack growth simulation, \(f(x_n, y_n) \) corresponds to calculating the stress intensity factor with given crack size \(y_n \). Therefore, evaluating \(f(x_n, y_n) \) requires a finite element modeling with the current geometry of the crack. If a different method, such as the backward Euler method, is used, then \(f(x_{n+1}, y_{n+1}) \) is required, which is the stress intensity factor corresponding to the unknown crack size \(y_{n+1} \). Therefore, there exists a fundamental difficulty to use a numerical integration method other than the forward Euler method.

The simplest approach to integrate the Paris model for fatigue crack growth is the use of the forward Euler method. Here the stress intensity factor range at the current crack geometry is the only information needed to find the increment of growth between the current and future crack geometries. The growth increment is calculated as

$$\Delta a = \Delta N (C (\Delta K_I)^m)$$ \hspace{1cm} (2.5)$$

where \(i \) is the current increment. The corresponding number of elapsed cycles can be approximated as

$$\Delta N_i = \frac{\Delta a}{C (\Delta K_I)^m}$$ \hspace{1cm} (2.6)$$

for a fixed increment of crack growth. As the forward Euler method only uses the slope at the current point and linearly interpolates to the next crack size it can lead to large inaccuracies for relatively small crack growth increments. Although the physical meaning of \(\Delta N \) is the number of elapsed cycles, in this model it is treated as a continuous variable as crack growth occurs over tens of thousands of cycles. Choosing a larger \(\Delta N \) results in needing fewer finite element simulations while sacrificing accuracy.

Although the forward Euler method can resolve the issue related to evaluating the slope at unknown crack sizes, it has a drawback in slow convergence; the accuracy of the method is proportional to the step size, \(h \). In crack growth analysis, the step size, \(\Delta N \), is the number of fatigue loading cycles between two evaluation points. Since cracks grow slowly throughout the lifecycle of a product, a small step size means tens of thousands of simulations. Therefore, it is highly desired to use a numerical integration method that allows a larger step size, while maintaining accuracy.

2.2.2. Midpoint integration method

There are numerous numerical methods that allow larger step sizes for integration, but the midpoint integration method is used as a demonstration tool in this paper. The midpoint method \[10\] generally provides a better accuracy than the forward Euler method as it takes the slope at the midpoint between the current and future data points \(x_{n+1/2} \) and uses that value to approximate the interval from \(x_n \) to \(x_{n+1} \) such that the approximation is given as

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, y_n + \frac{h}{2} f(x_n, y_n)\right).$$ \hspace{1cm} (2.7)$$
The accuracy of the method is proportional to h^2; therefore, it allows a larger step size for the same accuracy with the forward Euler method. However, this method requires evaluating the slope at the advanced half step. In practice, this is not an easy task because the crack size at the advanced step is unknown; it is a part of the solution. In addition, in a complex system, the direction of crack growth may not be constant, and thus, it would be difficult to build a numerical model to calculate the slope at the advanced step.

The next approach to integrating the Paris model is the use of the midpoint method where the growth increment is calculated as

$$\Delta a_i = \Delta N_i \left[C \left(\Delta K_{i+1/2} \right)^m \right]$$ \hspace{1cm} (2.8)

where $i + 1/2$ is the midpoint between the current and next increment. Similarly, ΔN_i is given as

$$\Delta N_i = \frac{\Delta a_i}{C \left(\Delta K_{i+1/2} \right)^m}.$$ \hspace{1cm} (2.9)

Here the slope at the midpoint of the current cycle is used to extrapolate ahead to $i + 1$. This leads to a better approximation of the crack size at the next increment as a more accurate approximation of the slope over the entire interval of the chosen growth increment is used. This method requires additional function evaluations at $i + 1/2$ for each crack geometry, effectively doubling the number of function evaluations needed for the given simulation.

3. Use of surrogate model in integration

3.1. Constant step size algorithm

The limitation on the types of methods which can be used in the direct integration of a fatigue model come from the need to evaluate the stress intensity factor at some future crack tip position. Because this crack position is unknown, it is unclear how to apply a numerical method to address this challenge. The idea presented here is to use a surrogate model to fit the available stress intensity factor history. The surrogate model can then be used to extrapolate ahead of the current crack position to get an estimate of the stress intensity factor which can then be used for a higher-order integration method. Visually, this is shown in Fig. 2 where the filled circles represent current or past numerical data points, the empty circle represents the data point being solved for currently, and the empty square represents the function evaluation at the $N_{i+1/2}$.

In this paper, results are presented for the kriging surrogate (see Appendix A for details). Kriging was chosen after quick benchmark tests comparing other surrogates such as polynomial response surfaces [35], radial basis neural networks [36], and support vector regression [37]. Nevertheless, the techniques are suitable for any surrogate and the choice of which is problem dependent. A comprehensive study comparing surrogate performance is an objective of future research.

For problems with mixed mode loading, two kriging surrogates are used. First, a kriging surrogate is used to approximate the response of ΔK as a function of either the crack length a or the number of elapsed cycles N. The kriging approximation is then used for a higher order approximation to Paris model, such as the midpoint method given by Eq. (2.8). For the case of a fixed Δa, ΔN is calculated a posteriori to the function evaluations using interpolation between data points. Equally spaced data points between a_i and the final crack length are fitted using kriging. This surrogate is then used to interpolate between data points and evaluate the corresponding ΔN for each Δa. For a fixed ΔN, kriging is used to fit the data up to the current cycle and extrapolate approximate values of ΔK for the use of the midpoint method. Second, a kriging surrogate is used to approximate the angle of crack growth θ.

In order to build the surrogate model, at least three data points are required, which are obtained using the forward Euler method with a small time step. In addition, the initial crack grows slowly, i.e., small Δa, the forward Euler method can yield accurate crack growth calculation. Two algorithms are provided for the selection of a variable step size for direct fatigue evaluation. A general form is introduced based on the agreement between the stress intensity factor and crack growth direction values for the surrogate extrapolation and the theoretical or XFEM values.

3.2. Variable step size

There are numerical methods which will automatically adjust the integration step size to some allowable error [10]. However, these methods typically use function evaluations to estimate the error associated with a given step size before choosing upon a step size to use. In the finite element framework, this algorithm would result in expensive function evaluations in order to determine the allowable step size. To avoid these additional function evaluations, an algorithm is proposed which allows for the step size to be dynamically changed based on the accuracy of the surrogate extrapolation. The step size at the ith step is adjusted at $i + 1$ step according to the surrogate accuracy. That is, the more accurate the surrogate is, the larger the $i + 1$th step size will be. Conversely, if the surrogate is not accurate enough, the step size is reduced. Formally, the $i + 1$th step size is found from the solution for the ith crack geometry as

$$\Delta N_{i+1} = \Delta N_i \min \left[\frac{a_i}{1 - \frac{\Delta a}{\Delta N_{i+1}}} \right]^2 \left(\frac{\Delta a}{1 - \Delta a} \right)$$ \hspace{1cm} (3.1)

where ΔN_i is the current step size, a is the allowable percent difference between the surrogate extrapolation and XFEM values at $i + 1$.

![Fig. 2. Integration of fatigue crack growth model from N_i to N_{i+1} for a specified error e. For an unknown $\Delta K-a$ relationship, a simple integration method is the Euler method which uses the slope at N_i and extrapolates to N_{i+1}. To apply the midpoint integration method, which uses the slope at $N_{i+1/2}$ and extrapolates to N_{i+1}, an expensive function evaluation is required at $N_{i+1/2}$. Instead of an expensive function evaluation at $N_{i+1/2}$, it is proposed to fit a surrogate model to the $\Delta K-N$ history. The surrogate model is then used to extrapolate to $N_{i+1/2}$ enabling the use of high-order integration without additional expensive function evaluations.](image-url)
x is an exponent which determines how quickly the step size changes, and ΔK_{i+1} and θ_i are evaluated on $i+1$ for the current crack geometry using either a numerical (e.g. XFEM) or surrogate (e.g. kriging) model. The step size is scaled based on the accuracy of the predicted value. For the case where either $\Delta K_{i+1}^{\text{NUM}} = \Delta K_{i+1}^{\text{EXACT}}$ or $\theta_i^{\text{NUM}} = \theta_i^{\text{EXACT}}$, then $\Delta N_{i+1} = 2\Delta N_i$. The values of a_i and q_i in Eq. (3.1) were found to be 0.001, while x_i and x_k were defined to be 0.1 based on a parameter study.

A summary of this approach follows. A series of XFEM simulations were performed to evaluate ΔK^{NUM} as a function of the crack size a. In addition, the angle of crack growth given in terms of the global coordinate system θ^{NUM} was evaluated as a function of crack size. A brief summary of the XFEM is given in Appendix B. Once these easily evaluated functions were available, the crack growth was simulated such that:

1. For crack geometry i, fit surrogate for history of ΔK^{NUM} and θ^{NUM}, evaluate ΔK^{FOR} and θ^{FOR} at $i+1/2$ and $i+1$.
2. Calculate the crack growth increment Δa from $\Delta a = \Delta N_i C (\Delta K_{i+1/2}^{\text{FOR}} + 1)$.
3. Calculate the crack growth increments in the x and y-directions from $\Delta a = \Delta a \cos \left(\theta_i^{\text{FOR}} \right)$ and $\Delta y = \Delta a \sin \left(\theta_i^{\text{FOR}} \right)$.
4. Update the crack tip location based on Δa and Δy followed by evaluating $\Delta K_{i+1}^{\text{NUM}}$ and $\theta_{i+1}^{\text{NUM}}$.
5. Find the next step size based on the criteria in Eq. (3.1), repeat for next crack geometry.

4. Numerical experiments

4.1. Setup

First a center crack in an infinite plate under uniaxial tension is considered. This case is convenient as it has a closed form solution for the crack size and stress intensity factor as a function of applied stress, loading cycle, and material properties. This allows for an estimate of the amount of error that can be expected by the use of kriging to provide data points instead of performing a function evaluation. The effect on the choice of a fixed Δa or ΔN is considered for the theoretical model of a center crack in an infinite plate to show the validity of the approach. The presented variable step size algorithm is also used for each example problem. Results are presented for each case as the final approximate value normalized by the exact final value of crack size or cycle number. A value of one denotes perfect agreement with the exact solution.

The chosen geometry for all problems is a flat, square plate under uniaxial tension. The plate is considered to be infinite in problem A (Section 4.2) the plate width for problem B (Section 4.3) was 0.2 m, and the plate width for problem C (Section 4.4) was 2 m. For problems A and B, the applied uniaxial tension was 78.6 MPa. The applied stress for problem C was material dependent and is given in Table 7. The tested materials and the corresponding material properties are aluminum 2024 at stress ratios of 0.1 (C = 1.60×10^{-1}, $m = 3.59$, $K_C = 30 \text{ MPa} \sqrt{m}$) and 0.5 (C = 3.15×10^{-1}, $m = 3.59$, $K_C = 30 \text{ MPa} \sqrt{m}$) as well as austenitic ($C = 1.36 \times 10^{-10}$, $m = 2.25$, $K_C = 50 \text{ MPa} \sqrt{m}$) and martensitic ($C = 5.60 \times 10^{-12}$, $m = 3.25$, $K_C = 50 \text{ MPa} \sqrt{m}$) steel [38]. The results are presented for each case as a function of the ratio between the known solution and the prediction for either crack size or cycle number such that a value of one denotes the exact solution.

4.2. Center crack in an infinite plate under tension

First, a center crack in an infinite plate with initial crack length of 10 mm is considered. For the case of a center crack in an infinite plate under uniaxial tension, the Mode I stress intensity factor K_I is

$$K_I = \sigma \sqrt{\pi a}$$ \hspace{1cm} (4.1)

where σ is the applied stress, and a is the half crack length. By substituting Eq. (4.1) into Eq. (2.1) for Paris model and rearranging terms, the number of cycles for a crack to grow can be calculated using the following integration:

$$N = \int_{a_i}^{a_f} \frac{da}{C (\sigma \sqrt{\pi a})^m} = \left[\frac{a_f^{1-m} - a_i^{1-m}}{C (\frac{a_f}{a_i})^m} \right]^{\frac{1}{m}}$$ \hspace{1cm} (4.2)

where a_i is the initial crack size. Rearranging Eq. (4.2), the crack size a_f after N cycles can be calculated by

$$a_f = \left[\frac{NC (1 - \frac{m}{2}) (\sigma \sqrt{\pi})^m + a_i^{1-m}}{2} \right]^{\frac{1}{m}}.$$ \hspace{1cm} (4.3)

This allows for the midpoint method to be applied as a_i and K_I can be directly evaluated and used in the integration of Paris model at any cycle number. For a geometry without known relationship between K_I and a a finite element solution would need to be performed at N_i at which time an Euler approximation could be used to approximate $a_{i/2}$, allowing a second finite element simulation to be performed and the midpoint method to be applied.

An aluminum 2024 plate with a stress ratio of 0.5 is chosen to validate the use of kriging extrapolation for the integration of the fatigue crack growth model. The critical stress intensity factor is reached for a crack size of 50 mm given an initial crack size of 10 mm in about 22,300 cycles. For a fixed Δa, the results are given in Table 1. Recall that the common Δa used in the literature [3,4,6] is $a_i/10$. For that crack growth increment, the Euler approximation has over 5% error. Through the use of the midpoint approximation, the error is reduced to less than 1%. Larger crack growth increments for the Euler method lead to very large errors, which can be drastically reduced through the use of the midpoint approximation. Note also that the use of kriging to fit data and to interpolate estimates for the necessary function evaluations for the midpoint approximation results in no loss of accuracy. As interpolation is being used here, it would also be possible to apply other higher-order approximations such as the Runge–Kutta method [10] for the back-calculation of elapsed cycles for the case of a fixed Δa.

For a fixed ΔN, the results are given in Table 2. The first observation from Table 2 is that the accuracy of Euler approximations is much more sensitive to changes in fixed ΔN when compared to a fixed Δa. However, the midpoint approximations are largely insensitive to the chosen crack growth increment. As before, the kriging assisted midpoint approximation is very accurate and comparable to using the exact formula.

To assess the applicability of the variable step size algorithm to a range of fatigue problems four different materials were chosen along with initial crack sizes of either 1 or 10 mm and grown to failure at 50 mm. As with the fixed step size approach, three data points are found using the forward Euler approach with $\Delta N = 1$ before the variable step size algorithm begins. The results for the materials and crack sizes is given in Table 3.

Note that the number of function evaluations for the Euler method is the same as N_{NUM}. It can be noted from Table 3 that the number of function evaluations that the algorithm uses to model the crack growth to failure is generally independent of the number of cycles to failure. The general trend of the variable step size algorithm is that initially there are smaller steps, then the step size increases. When the crack approaches the critical crack size, the integration step size decreases ensuring an accurate solution. This behavior is shown in Section 4.4 in Fig. 4.
4.3. Edge crack in a finite plate under tension

For the case of an edge crack in a finite plate under uniaxial tension, the Mode I stress intensity factor \(K_I \) is given by

\[
K_I = \left[1.12 - 0.281 \frac{a}{W} - 10.55 \left(\frac{a}{W} \right)^2 - 21.72 \left(\frac{a}{W} \right)^3 + 30.39 \left(\frac{a}{W} \right)^4 \right] a \sqrt{\pi a}
\]

(4.4)

where \(a \) is the crack length and \(W \) is the plate width.
In this case, no analytical expression for \(a(N) \) is available. The crack length after 10,700 cycles was found to be 30 mm using the forward Euler method (the step size was reduced until convergence in crack size at 10,700 cycles was achieved). For a fixed step size, aluminum 2024 with a stress ratio of 0.5 is chosen to validate the use of kriging extrapolation for the integration of the fatigue crack growth model with a constant step size. The critical stress intensity factor is reached for a crack size of 30 mm given an initial crack size of 10 mm in about 11,000 cycles, which is close to the reference value of 10,700 cycles. For a fixed \(\Delta a \), the results are given in Table 4. Here for a fixed crack growth increment of \(a_i/10 \) the corresponding Euler approximation has an error of 7%, while the midpoint approximation yields less than 1% error.

For a fixed elapsed number of cycles in each function evaluation, the exact results for the midpoint method are not available as there is no explicit value for \(a(N) \). From Table 5 it is apparent that once again, the kriging assisted midpoint method allows for larger step sizes compared to the forward Euler method. In this case, for a

Table 5

Accuracy of kriging extrapolation integration for fixed increment \(\Delta N \) for an edge crack in a finite plate of Al 2024 with \(R = 0.5 \). The data is presented as normalized values of the crack length at cycle number 11,000. The kriging surrogate is used to extrapolate a stress intensity factor range allowing the midpoint method to be applied. The midpoint method may not be applied to this problem as no closed solution for \(a(N) \) is known to the authors for the stress intensity factor given by Eq. (4.4).

<table>
<thead>
<tr>
<th>(\Delta N)</th>
<th>Euler</th>
<th>FunEval</th>
<th>Midpoint*</th>
<th>FunEval†</th>
<th>Kriging extrapolating midpoint</th>
<th>FunEval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>11,000</td>
<td>N/A</td>
<td>N/A</td>
<td>1.00</td>
<td>11,000</td>
</tr>
<tr>
<td>25</td>
<td>0.994</td>
<td>440</td>
<td>N/A</td>
<td>N/A</td>
<td>1.00</td>
<td>440</td>
</tr>
<tr>
<td>50</td>
<td>0.987</td>
<td>220</td>
<td>N/A</td>
<td>N/A</td>
<td>1.00</td>
<td>220</td>
</tr>
<tr>
<td>100</td>
<td>0.975</td>
<td>110</td>
<td>N/A</td>
<td>N/A</td>
<td>0.999</td>
<td>110</td>
</tr>
<tr>
<td>500</td>
<td>0.947</td>
<td>22</td>
<td>N/A</td>
<td>N/A</td>
<td>0.995</td>
<td>22</td>
</tr>
<tr>
<td>1000</td>
<td>0.877</td>
<td>11</td>
<td>N/A</td>
<td>N/A</td>
<td>0.978</td>
<td>11</td>
</tr>
</tbody>
</table>

* Due to the inability to exactly integrate Paris model with the stress intensity factor of Eq. (4.4), it is not possible to use the midpoint method for this problem. Nevertheless, when using a surrogate model to extrapolate, it is possible to apply the midpoint method to any problem based on the stress intensity factor range history.

Table 6

Effect of material and initial crack size on estimated cycles to failure for the variable step size algorithm for an edge crack in a finite plate. Crack growth is simulated from initial crack length \(a_i \) until the crack a length of 50 mm. A comparison between the cycle where failure occurs based on the Euler \(N_{f, \text{euler}}^i \) and kriging extrapolation \(N_{f, \text{KRG}}^i \) methods is given in addition to the number of required function evaluations.

<table>
<thead>
<tr>
<th>Material</th>
<th>(a_i)</th>
<th>(N_{f, \text{euler}}^i), FunEval(^{\text{euler}})</th>
<th>(N_{f, \text{KRG}}^i), FunEval(^{\text{KRG}})</th>
<th>(N_{f, \text{KRG}}^i / N_{f, \text{euler}}^i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R = 0.1)</td>
<td>1</td>
<td>235,374</td>
<td>42</td>
<td>1.02</td>
</tr>
<tr>
<td>(R = 0.1)</td>
<td>10</td>
<td>20,701</td>
<td>38</td>
<td>1.03</td>
</tr>
<tr>
<td>(R = 0.5)</td>
<td>1</td>
<td>119,557</td>
<td>44</td>
<td>1.03</td>
</tr>
<tr>
<td>(R = 0.5)</td>
<td>10</td>
<td>10,516</td>
<td>38</td>
<td>1.03</td>
</tr>
<tr>
<td>Austenitic</td>
<td>1</td>
<td>594,634</td>
<td>49</td>
<td>1.01</td>
</tr>
<tr>
<td>Austenitic</td>
<td>10</td>
<td>189,225</td>
<td>41</td>
<td>1.02</td>
</tr>
<tr>
<td>Martensitic</td>
<td>1</td>
<td>14,158,883</td>
<td>46</td>
<td>1.03</td>
</tr>
<tr>
<td>Martensitic</td>
<td>10</td>
<td>196,924</td>
<td>41</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Fig. 3. Initial (A) and final (B) crack geometries for an inclined center crack in a square finite plate under uniaxial tension. XFEM was used to calculate the stress intensity factors and the crack growth direction was found from the stress intensity factors.
The variable step size algorithm is again tested with a range of fatigue problems. Four different materials were chosen along with initial crack sizes of either 1 or 10 mm and grown to failure at 50 mm. As with the fixed step size approach, three data points are found using the forward Euler approach with $D_{N_{fail}} = 1$ before the variable step size algorithm begins. The previously determined values for a_k and a_t were found to be 0.0001, while z_t and z_k were defined to be 0.1 based on a parameter study. The results for the materials and crack sizes are given in Table 6. Note that there is an increased error for this case can be attributed to the a/W relationship present in Eq. (4.4).

4.4. Inclined center crack in a finite plate under uniaxial tension

The first test problem which also considers the effect of crack growth direction is that of an inclined center crack in a finite plate subjected to uniaxial tension in the y-direction as shown in Fig. 3. The plate was chosen to be a 2×2 m plate with an initial half crack size of 0.187 m. The crack was grown by XFEM simulations...
on a structured mesh of element size \(h = 0.05 \) m to a final half crack size of 0.6 m. The values of the constants in the variable step size algorithm were retained from the previous sections.

For the variable step size algorithm, different applied stresses were considered in order to make the Euler approximation feasible. The comparison of the number of cycles to failure and the final crack position for the Euler with constant \(\Delta N = 1 \) to the variable step size algorithm for the functions for \(\Delta K \) and \(\phi \) is presented in Table 7. Note that the cycle number corresponding to failure in each case is in excellent agreement with the XFEM solution, but with substantially less function evaluations are needed for the solution. The step size trends and the errors as a function of cycle number for both stress ratios for aluminum 2024 are given in Fig. 4.

5. Conclusions

The ordinary differential equation which governs fatigue crack growth is not easily solved because there is no analytical solution for complex geometries. In a general sense, the stress intensity factor can only be calculated at the current crack size using the extended finite element method. With that, it is common to take a forward Euler approach to the direct calculation of both the magnitude and direction of crack growth. To achieve sufficient accuracy, the forward Euler approach limits the step size and increases the number of function evaluations.

In this paper, kriging was used to fit the available history of the stress intensity factor and crack growth direction. The surrogate allows extrapolation ahead of the current data point, enabling the use of the midpoint approximation method for both stress intensity factor and crack growth direction. Additionally, an algorithm that adjusts the step size for a given allowable error was presented. The proposed approaches were demonstrated on a center crack in an infinite plate under uniaxial tension, an edge crack in a finite plate, and an inclined center crack in a square finite plate under uniaxial tension. It was found that:

- The use of surrogate modeling enables high order integration of crack growth, and
- the algorithm for adjusting the step size produces comparable accuracy with a significantly reduced number of function evaluations.

Results can be augmented with other problems to provide a more solid estimate of the savings associated with the procedure. In particular, the optimal choice of allowable prediction error and step size change exponent need to be studied. Future research also includes the use of uncertainty estimates available in certain surrogates (such as kriging) for further guidance on the integration step size.

Appendix A. Kriging surrogate

Surrogate modeling is a technique of approximating a function which is expensive to evaluate with one which is less expensive. Normally the approximation is done such that the error between the original function and approximate one is minimized at a given set of points. In this paper, the kriging [39–41] surrogate model is used to approximate a function of interest \(y(x) \). As this function is expensive to evaluate, it may be approximated by a cheaper model \(\hat{y}(x) \) based on assumptions on the nature of \(y(x) \) and on the observed values of \(y(x) \) at a set of \(p \) data points called experimental design. More explicitly,

\[
y(x) = \hat{y}(x) + \epsilon(x),
\]

where \(\epsilon(x) \) is the error of \(y(x) \) at data points, \(\hat{y}(x) \) is a surrogate, and \(\epsilon(x) \) represents both the error of approximation and random errors.

Kriging estimates the value of the unknown function \(y(x) \) as a combination of basis functions \(f_i(x) \) such as a polynomial basis and departures \(z(x) \) as

\[
\hat{y}(x) = \sum_{i=1}^{m} \beta_i f_i(x) + z(x),
\]

where \(z(x) \) satisfies \(z(x_i) = y(x_i) - \sum_{i=1}^{m} \beta_i f_i(x_i) \) for all sample points \(x_i \) and is assumed to be a realization of a stochastic process \(Z(x) \) with mean zero,

\[
\text{cov}(Z(x_i), Z(x_j)) = \sigma^2 R(x_i, x_j),
\]

and process variance \(\sigma^2 \), and spatial covariance function given by

\[
\sigma^2 = \frac{1}{p} (y - Xb)^T R^{-1} (y - Xb),
\]

where \(R(x_i, x_j) \) is the correlation between \(Z(x_i) \) and \(Z(x_j) \), \(y \) is the value of the actual responses at the sampled points, \(X \) is the Gramian design matrix constructed using the basis functions at the sample points, \(R \) is the matrix of correlations \(R(x_i, x_j) \) among sample points, and \(b \) is an approximation of the vector of coefficients \(\beta \) of Eq. (A.2).

Fig. A1 shows the prediction and the error estimates of kriging. It can be noticed that since the kriging model is an interpolator, the error vanishes at data points. The MATLAB SURROGATES Toolbox [42] was used in all numerical experiments.

Appendix B. Extended finite element method

Modeling crack growth in a traditional finite element framework is a challenging engineering task. Originally the finite element framework was modified to accommodate the discontinuities that are caused by phenomena such as cracks, inclusions and voids. The finite element framework is not well suited for modeling crack growth because the domain of interest is defined by the mesh. At each increment of crack growth, at least the domain surrounding the crack tip must be remeshed such that the updated crack geometry is accurately represented.

The extended finite element method [3,4,6] (XFEM) allows discontinuities to be represented independently of the finite element mesh. Arbitrarily oriented discontinuities can be modeled independent of the finite element mesh by enriching all elements cut by a discontinuity using enrichment functions satisfying the
discontinuous behavior and additional nodal degrees of freedom. For the case of a domain containing a crack [3] the approximation takes the form:

$$\mathbf{u}^I(x) = \sum_{i=1}^n N_i(x) \left[\mathbf{u}_i + \sum_{j=1}^{3} H(x) \mathbf{a}_i + \sum_{j=1}^{3} \sum_{s=1}^{4} \Phi_s(x) \mathbf{b}_s \right]$$

(B.1)

where $N_i(x)$ are the traditional finite element shape function, $H(x)$ is the Heaviside enrichment function, $\Phi_s(x)$ are the crack tip enrichment functions, and \mathbf{u}_i, \mathbf{a}_i, and \mathbf{b}_s are the classical and enriched degrees of freedom. When a node would be enriched by the Heaviside and crack tip enrichment functions, only the crack tip functions are used as is shown in Fig. B1.

To decrease the computational time for the repeated solutions, a reanalysis algorithm [5] is used which takes advantage of the large constant portion of the global stiffness matrix. The mixed-mode stress intensity factors for the given cracked geometry were calculated using the domain form of the interaction integrals [43,44]. The direction of crack growth was calculated using the maximum circumferential stress criterion given by Eq.(2.3). The direction of crack growth was calculated using the Heaviside enrichment function, and crack tip enrichment functions, and crack tip growth was calculated using the Paris Law to calculate the magnitude of crack growth for a given cracked geometry. MATLAB XFEM code [45] was used in the numerical experiment of an inclined center crack in a finite plate. MATLAB XFEM code [45] was used in the numerical experiment of an inclined center crack in a finite plate.

References