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Modeling a flexible rotating spacecraft as a distributed parameters system of a rigid hub
attached to a flexible appendage is very common. When considering large angle maneuvers
the same model applies to flexible robotic manipulators by adding a tip mass at the end
of the flexible appendage to account for the payload. Following Euler-Bernoulli beam
theory the dynamics for both no tip mass and tip mass models are derived. A Generalized
State Space (GSS) system is constructed in the frequency domain to completely solve for
the input-output transfer functions of the models. The analytical solution of the GSS
is obtained and compared against the classical assumed modes method. The frequency
response of the system is then used in a classical control problem where a Lyapunov stable
controller is derived and tested for gain selection. The assumed modes method is used to
obtain the time response of the system to verify the gain selections and draw connections
between the frequency and the time domains. The GSS approach provides a powerful
tool to test various control schemes in the frequency domain and a validation platform for
existing numerical methods utilized to solve distributed parameters models.

I. Introduction

A maneuvering flexible spacecraft is often modeled as coupled rigid hub, flexible beam-like structures.
Two widely used models describing such systems are shown in Figure 1 and Figure 2. Figure 1 shows a
model with a free end (no tip mass model), whereas Figure 2 is for a model with an attached mass at the end
of the beam (tip mass model). Such models are described by coupled systems of Integro-Partial Differential
Equations (IPDEs).1–7 Solutions techniques presented in these works are mainly numerical applying finite
elements methods and/or the assumed modes techniques. Numerical solutions in general are approximate and
the accuracy is a function of the number of elements/modes chosen which can impose a high computational
cost as the need arises for more accurate results. As a natural extension for such techniques the control
problem is addressed in several works for optimality and/or robustness.6,8–12 Analytical transfer functions
for both models, no tip mas and tip mass, have been previously developed.13–15 The transfer functions are
used to analyze the system frequency response and numerical results are compared and verified against the
assumed modes solution.

The control problem of a single axis rotating flexible spacecraft is addressed extensively utilizing several
controls and modeling schemes. The optimal control problem of a rotating hub with symmetric four flexible
appendages is presented as a numerical example.16 An admissible function that meets both physical and
geometrical boundary conditions is chosen. The effectiveness of the minimization rely on the number of modes
retained in the series of the chosen admissible function. Finite elements techniques besides the assumed
modes approach are used to solve a similar problem.6 The natural frequencies of the system are calculated
and the two methods are compared in terms of accuracy and the required number of elements/modes.
Several other flexible structures examples are similarly addressed.8 The optimal control problem is again
addressed for various control schemes and penalty functions including free final time, free final angle and
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control rate penalty methods. Large angle maneuvers for a flexible spacecraft are addressed for a hub-
four flexible appendages model.9 Two-point boundary value problems and kinematic nonlinearities are also
addressed.10 In a more recent work17 the adaptive control problem is addressed for a similar rigid hub
flexible appendage model. The proposed control scheme is independent of the truncation generated from
the flexible modes admissible function because no series approximations are introduced. Several other works
address similar problems with emphasis on optimality,11,12,18–21 and/or robustness.11,12 A comprehensive
literature survey,22 covers the modeling and control of flexible appendage in the controls community.

In this work the existence of the exact transfer functions13–15 for both models is utilized in developing
frequency domain control schemes for the spacecraft. The frequency response developed is used to obtain
the gains required to implement a the controller that would drive the system from its initial state to a target
state.

Figure 1. Hub-Beam Model

y(x,t)

Ti
p 

M
as

s

Figure 2. Hub-Beam-Tip Mass Model

II. The Generalized State Space Model

The more general hub-beam-tip mass model equations are derived knowing that by setting the tip mass
and the tip inertia to 0 the hub-beam model can be obtained. The inertial position and velocity of a point
on the flexible appendage is given by,

p = (x+ r) b̂1 + yb̂2 (1)

v = ẏb̂2 + θ̇b̂3 ×
[
(x+ r) b̂1 + yb̂2

]
(2)

where, r is the rotating hub radius, L the length of the flexible appendage, x ∈ [0, L] the position on the
flexible appendage and y the transverse deflection of the flexible appendage. Neglecting the yθ̇ term in the
velocity, the kinetic energy and the potential energy for the tip mass model are expressed as,6

T = Thub + Tappendage + Ttip

T =
1

2
Ihubθ̇

2 +
1

2

∫ L

0

ρ
(
ẏ + (x+ r)θ̇

)2

dx+
1

2
mtip

(
(r + L)θ̇ + ẏ(L)

)2

+
1

2
Itip

(
θ̇ + ẏ′(L)

)2 (3)

V =
1

2

∫ L

0

EI (y′′)
2

dx (4)

Applying Hamilton’s extended principle the system equations of motion and boundary conditions can be
expressed as,

Ihubθ̈ +

∫ L

0

ρ(x+ r)
(
ÿ + (x+ r)θ̈

)
dx+mtip(L+ r)

(
(L+ r)θ̈ + ÿ(L)

)
+ Itip

(
θ̈ + ÿ′(L)

)
= u

ρ
(
ÿ + (x+ r)θ̈

)
+ EIyIV = 0

(5)
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atx = 0 : y = 0, y′ = 0

atx = L : EI
∂3y

∂x3

∣∣∣∣
L

= mtip

(
(L+ r)θ̈ + ÿ(L)

)
, EI

∂2y

∂x2

∣∣∣∣
L

= −Itip
(
θ̈ + ÿ′(L)

) (6)

By setting mtip = Itip = 0 the no tip mass model, Figure 1, dynamics and boundary conditions are obtained
as,

Ihubθ̈ +

∫ L

0

ρ(x+ r)
(
ÿ + (x+ r)θ̈

)
dx = u

ρ
(
ÿ + (x+ r)θ̈

)
+ EIyIV = 0

(7)

atx = 0 : y = 0, y′ = 0

atx = L : EI
∂3y

∂x3

∣∣∣∣
L

= 0, EI
∂2y

∂x2

∣∣∣∣
L

= 0
(8)

A generalized state space (GSS) model is developed by taking the Laplace transform, Eq. (9), for Eq. (5)
and performing integration by parts to remove the spatial dependency from the integral. Detailed steps for
the GSS derivation is presented in previous works.14,15

F (s) =

∫ ∞
0

e−stf(t) dt (9)

z1 =
s
ȳ dx dx′ z′1 = z2

z2 =
∫
ȳ dx z′2 = z3

z3 = ȳ z′3 = z4

z4 = ȳ′ z′4 = z5

z5 = ȳ′′ z′5 = z6

z6 = ȳ′′′ z′6 = −β
(
z3 + (r + x)θ̄

)
where, β ≡ s2ρ

EI
(10)

The generalized state space model system of equations is solved by first developing the homogeneous and
the forced solutions for the linear state space model in Eq. (10),

{Z(x)} = exp[Ax] {Z(0)}︸ ︷︷ ︸
ZH

+

∫ x

0

exp [A(x− τ)] {b(τ)} dτ︸ ︷︷ ︸
ZF

(11)

where the homogeneous solution ZH is given by,

{ZH} =



(1− f)z5/β − (βx+ f ′′′)z6/β
2

−f ′z5/β + (1− f)z6/β

−f ′′z5/β − f ′z6/β

−f ′′′z5/β − f ′′z6/β

fz5 − f ′′′z6/β

f ′z5 + fz6


(12)

and the forced part is evaluated from,

{ZF } =

∫ x

0

exp [A(x− τ)] {b(τ)} dτ = −βθ̄
∫ x

0

(r + τ)



(β(x− τ) + f ′′′(x− τ)) /β2

(1− f(x− τ)) /β

−f ′(x− τ)/β

−f ′′(x− τ)/β

−f ′′′(x− τ)/β

f(x− τ)


dτ (13)
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The funtion f that represents the elements of the solution is derived from the matrix exponential solution
of the flexible appendage sub-problem and is given by,14,15

f(x) = cos

(
β1/4x√

2

)
cosh

(
β1/4x√

2

)
(14)

It is observed that the function f represents the real part of the complex function

f = Re {cos(σx)} , where, σ ≡
√
i
√
β (15)

The homogeneous solution in Eq. (12) can now be represented as,

{ZH} =



(1− cos(σx))z5/β + (βx+ σ3 sin(σx))z6/β
2

σ sin(σx)z5/β + (1− cos(σx))z6/β

σ2 cos(σx)z5/β + σ sin(σx)z6/β

−σ3 sin(σx)z5/β + σ2 cos(σx)z6/β

cos(σx)z5 − σ3 sin(σx)z6/β

−σ sin(σx)z5 + cos(σx)z6


(16)

Similarly, the forced part of the solution, Eq. (13), is obtained as,

{ZF } =



1
6β

(
−3βrx2 − βx3 + 6σ2r cos(σx) + 6σ sin(σx)− 6σ2r − 6σ2x

)
θ̄

1
2σ2

(
−2σ2rx− σ2x2 + 2σr sin(σx)− 2 cos(σx) + 2

)
θ̄

1
σ (σr cos(σx) + sin(σx)− σr − σx) θ̄

(−σr sin(σx) + cos(σx)− 1) θ̄

−σ (σr cos(σx) + sin(σx)− σr − σx) θ̄

− 1
σ2 (β (σr sin(σx)− cos(σx) + 1)) θ̄


=



I1(x)

I1(x)

I3(x)

I4(x)

I5(x)

I6(x)


θ̄ (17)

Equations (16) and (17) are combined to produce the full GSS solution as a function of z5 and z6.

{Z(x)} =



(1− cos(σx))z5/β + (βx+ σ3 sin(σx))z6/β
2 + I1(x)θ̄

σ sin(σx)z5/β + (1− cos(σx))z6/β + I2(x)θ̄

σ2 cos(σx)z5/β + σ sin(σx)z6/β + I3(x)θ̄

−σ3 sin(σx)z5/β + σ2 cos(σx)z6/β + I4(x)θ̄

cos(σx)z5 − σ3 sin(σx)z6/β + I5(x)θ̄

−σ sin(σx)z5 + cos(σx)z6 + I6(x)θ̄


(18)

The solution of the GSS model in Eq. (18) is obviously invariant to the model and its related boundary
conditions. By applying the specific model boundary conditions and solving for the state variables, z5, z6,
the solution is complete in terms of the known system parameters. This makes the GSS solution capable of
handling a wide range of distributed parameters problems as the need to apply the model specific boundary
conditions arises at the last step of the solution. Applying the model dependent boundary conditions,
Eq. (19) for the no tip mass model shown in Figure 1, z5, z6 are completely solved in Eq. (20)

atx = 0 : {Z} =
[

0 0 0 0 z5 z6

]T
atx = L : z5(L) = 0, z6(L) = 0

where, α ≡ s2Itip
EI

and γ ≡ s2mtip

EI

(19)

{
z5

z6

}
=

1

σ4 sin(σL)/β − cos(σL)2

[
cos(σL) σ3 sin(σL)/β

σ sin(σL) cos(σL)

]{
I5(L)

I6(L)

}
θ̄ (20)

4 of 14

American Institute of Aeronautics and Astronautics



For the model with tip mass shown in Figure 2, the boundary conditions are,

atx = 0 : {Z} =
[

0 0 0 0 z5 z6

]T
atx = L : z5(L) = −α

[
z4(L) + θ̄

]
, z6(L) = γ

[
z3(L) + (r + L)θ̄

]
where, α ≡ s2Itip

EI
and γ ≡ s2mtip

EI

(21)

and z5, z6 are obtained from,{
z5

z6

}
=

1

σ4 sin(σL)2/β − cos(σL)2

[
−α cos(σL) γσ3 sin(σL)/β

−ασ sin(σL) γ cos(σL)

]{
z4(L)

z3(L)

}

+

[
σ3 (γ(r + L)− I6(L)) /β (−α− I5(L))

σ (−α− I5(L)) γ(r + L)− I6(L)

]{
sin(σL)

cos(σL)

}
θ̄{

z4(L)

z3(L)

}
=

1

β

[
−σ3 sin(σL) σ2 cos(σL)

σ2 cos(σL) σ sin(σL)

]{
z5

z6

}
+

{
I4(L)

I3(L)

}
θ̄

(22)

Detailed derivations of solutions in Eq. (20) and Eq. (22) are presented in previous works.14,15 The expres-
sions obtained can then be expressed in the general form,

{Z(x)} =



g1(x)

g2(x)

g3(x)

g4(x)

g5(x)

g6(x)


θ̄ (23)

For the no tip mass model, from Eq. (7) the rotation angle of the rigid hub is associated with the input
torque by,

s2 [J1 + ρ ((r + x)g2(x)− g1(x))] θ̄ = ū

θ̄ =
ū

s2 [J1 + ρ ((r + x)g2(x)− g1(x))]

(24)

and from the GSS model, Eq. (10), the beam deformation is given by,

ȳ = g3(x)θ̄ =
g3(x)

s2 [J1 + ρ ((r + x)g2(x)− g1(x))]
ū (25)

where, J1 ≡ Ihub+
∫ L

0
ρ(r+x)2 dx is the total inertia. Similarly for the tip mass model, the beam deformation

ȳ is represented as a function of the input torque ū as,

s2 [J2 +mtip(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))] θ̄ = ū

θ̄ =
ū

s2 [J2 +mtip(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))]

ȳ =
g3(x)

s2 [J2 +mtip(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))]
ū

(26)

where the total inertia in that case is J2 ≡ Ihub +mtip(r + L)2 + Itip +
∫ L

0
ρ(r + x)2dx
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III. Frequency Response Numerical Results

From Eq. (25) and Eq. (26), the transfer function of the no tip mass model, G1(s, x), and the tip mas
model G2(s, x) are expressed as,

G1(s, x) =
g3(x)

s2 [J1 + ρ ((r + x)g2(x)− g1(x))]

G2(s, x) =
g3(x)

s2 [J2 +mtip(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))]

(27)

For the purpose of comparison the classical assumed modes solution6 is utilized. The method assumes a
decoupled spatial and time dependent beam response expressed with the series,

y(x, t) =

N∑
i=1

qi(t)φi(x) (28)

The spatial function φi(x) describes the i-th spatial mode of the flexible structure and is designed to meet
the physical and the geometrical boundary conditions of the beam. A widely used admissible function that
satisfies the boundary conditions is,6,10

φi(x) = 1− cos(iπx)

L
+

1

2
(−1)i+1

(
iπx

L

)2

where, 0 ≤ x ≤ L
(29)

Using Eq. (28) and Eq. (29) with Eq. (3) and Eq. (4) and following the Lagrangian approach,

d

dt

(
∂T

∂x

)
− ∂T

∂x
+
∂V

∂x
= F (30)

the system of equations of motion for the tip mass model is represented in the matrix form,[
J2 MT

θq

Mθq Mqq

]
ẍ +

[
0 0

0 Kqq

]
x =

{
u

0

}
(31)

where the elements of the mass and the stiffness matrices are defined as,

J2 = Ihub +mtip(r + L)2 + Itip +

∫ L

0

ρ(r + x)2 dx

[Mθq]i = ρ

∫ L

0

(r + x)φi(x) dx+mtip(r + L)φi(L) + Itipφ
′
i(L)

[Kqq]ij =

∫ L

0

φ′′i (x)φ′′j (x) dx

(32)

In order to obtain the no tip mass model equations, one can set mtip = Itip = 0 in Eq. (32) to obtain the
mass and stiffness matrices elements for the model. A comparison between the frequency response of the
analytical GSS and the numerical assumed modes method, assuming 10 modes, is presented in Figure 3 and
Figure 4 for the no tip mass model at x = 2 ft. and x = 4 ft., respectively. The set of parameters values
used in this comparison are extracted from a physical model6 and are shown in Table 1. Similar results are
obtained for the tip mass model and are shown in Figure 5 and Figure 6

IV. The Control Problem

Building on the analytical solution obtained for the more general tip mass model, the control problem is
analyzed. To gain some insight on the system behavior, the unit step input Bode plots are generated at the
midpoint of the appendage x = 2 ft. for both the responses of rigid body, θ̄(jω), and the flexible appendage,
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Figure 4. Frequency Response Comparison No Tip Mass
Model at x = 4 ft

Table 1. System Parameters Values

Parameter Value

Ihub 8 slug-ft2

ρ 0.0271875 slug/ft

E 0.1584× 1010 lb/ft2

L 4 ft

r 1 ft

I 0.47095× 10−7 ft4

m 0.1569 slug

Itip 0.0018 slug-ft2
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Figure 8. Bode Plot θ̄ at x = 4 ft

ȳ(jω), Figure 7 and Figure 8 respectively. The resonant behavior of the system previously obtained from
the GSS tranfer function, Eq. (27), is clearly present in this analysis with the phase angle shifting between
+90◦ and −90◦ at those frequencies. For further insights, the assumed modes method is used to generate
the model time response for a unit step input for θ(t), ˙θ(t), Figure 9 and Figure 10, and for y(x, t), ẏ(x, t),
Figure 11 and Figure 12. A case study is constructed for the more general tip mass model applying a
Lyapunov stable controller.6 First Eq. (5) is rewritten as,

Ihubθ̈ = u+ (M0 − rS0)

− (M0 − rS0) =

∫ L

0

ρ(x+ r)
(
ÿ + (x+ r)θ̈

)
dx+mtip(L+ r)

(
(L+ r)θ̈ + ÿ(L)

)
ρ
(
ÿ + (x+ r)θ̈

)
+ EIyIV = 0

(33)

where, (M0, S0) represent the bending moment and shear force at the root of the beam. The effect of the
tip mass inertia is left out for simplification and can be considered as a disturbance error or as part of the
model uncertainty the controller needs to overcome. The set of boundary conditions in Eq. (6) can then be
simplified as,

atx = 0 : y = 0, y′ = 0

atx = L : EI
∂3y

∂x3

∣∣∣∣
L

= mtip

(
(L+ r)θ̈ + ÿ(L)

)
, EI

∂2y

∂x2

∣∣∣∣
L

= 0
(34)
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We are interested in large angle maneuvers with a target final state given by,[
θ, θ̇, y(x, t), ẏ(x, t)

]
Target

= [θf , 0, 0, 0] (35)

A weighted Lyapunov function is then given by,

2V = w1Ihubθ̇
2 + w2 (θ − θf )

2

+ w3

[∫ L

0

ρ
(
ẏ + (x+ r)θ̇

)2

dx+mtip

(
(r + L)θ̇ + ẏ(L)

)2

+

∫ L

0

EI (y′′)
2

dx

]
(36)

where an extra term that includes a penalty for the current state versus the target state, (θ − θf ) is added
to achieve the required maneuver. By differentiating the Lyapunov function, Eq. (36) w.r.t. time and
substituting the dynamics, Eq. (33), and the boundary conditions, Eq. (34), V̇ can be expressed as,

V̇ = w1uθ̇ + w2 (θ − θf ) θ̇

+ (w3 − w1)

[∫ L

0

ρ(x+ r)
(
ÿ + (x+ r)θ̈

)
dx+mtip(L+ r)

(
(L+ r)θ̈ + ÿ(L)

)]
θ̇

= [w1u+ w2 (θ − θf ) + (w3 − w1) (rS0 −M0)] θ̇

(37)

In order to ensure stability, V̇ should meet the condition V̇ ≤ 0 and the control law is chosen as,

u =
−1

w1

[
w2 (θ − θf ) + (w3 − w1) (rS0 −M0) + w4θ̇

]
(38)

By substituting Eq. (38) into Eq. (37), the negative semi-definite expression, V̇ = −w4θ̇
2 ≤ 0 is obtained.

In order to simplify the gain choices associated with the control law, Eq. (38) can be re-written as,

u = −
[
k1 (θ − θf ) + k2 (rS0 −M0) + k3θ̇

]
(39)

where, k1 ≡ w2

w1
≥ 0, k2 ≡ w3−w1

w1
> −1 and k3 ≡ w4

w1
≥ 0. The sign and value of k2 will determine whether

the beam vibration energy, w3−w1 > 0, or the hub motion energy, w1 > w3 is dissipated. To investigate the
frequency domain response applying the control law, the Laplace transformation of Eq. (39) is expressed as,

ū = −k1

(
θ̄ − θf

s

)
−k2

(
ρs2

∫ L

0

(x+ r)
(
ȳ + (x+ r)θ̄

)
dx+mtips

2(L+ r)
(
(L+ r)θ̄ + ȳ(L)

))
−k3sθ̄ (40)

Utilizing integration by parts the transformed control law is expressed in terms of the GSS state variables
as,

ū =

[
−k1 − k2ρs

2

∫ L

0

(r + x)2 dx− k2mtips
2(L+ r)2 − k3s

]
θ̄

+ k1
θf
s
− k2ρs

2 ((x+ r)g2(x)− g1(x))− k2mtips
2(L+ r)g3(L)

(41)

Substituting Eq. (41) into the transfer function, Eq. (26), and collecting variables produced the transfer
function for the hub angle θ̄ as,

θ̄ =

[
k1
θf
s
− k2ρs

2 ((x+ r)g2(x)− g1(x))− k2mtips
2(L+ r)g3(L)

]
/

s2

[
k1

s2
+ k2ρ

∫ L

0

(r + x)2 dx+ k2mtip(L+ r)2 +
k3

s
+ J2 +mtip(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x)− g1(x))

]
(42)

The deformation transfer function can then be expressed in terms of θ̄ as,

ȳ = g3(x)θ̄ (43)
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Figure 13. Bode Plot Θ̄, Unit Gains
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Figure 14. Bode Plot Ȳ Unit Gains

After some trial and error the controller gains are adjusted to obtain the most stable response. To illustrate
the effect of gain changes on the system frequency response the gains are first set to k1 = 1, k2 = 1, k3 = 1.
Figure 13 and Figure 14 show the Bode plots associated with the two transfer functions, Eq. (42) and
Eq. (43), respectively, for unit gains. Clearly, the frequency response highlights potential system instability
with order of magnitude gain amplifications and a −180◦ phase angle. The gains are then adjusted to
k1 = 12, k2 = 0, k3 = 16. The Bode plots associated with the designed gains are shown in Figure 15 and
Figure 16.
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Figure 15. Bode Plot Θ̄, Designed Gains
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Figure 16. Bode Plot Ȳ Designed Gains

With no significant lags or high amplitude amplification, the chosen set of parameters can be suitable for
a controller to drive the rigid hub to its target final angle while mitigating the vibrations effect of the
appendage. The time response plots for the system are shown for θ(t), θ̇(t), in Figure 17 and Figure 18, and
for y(x = 2, t), ẏ(x = 2, t) in Figure 19 and Figure 20.
The results show achieving the target state for θ and θ̇ whereas, y(x, t) and ẏ(x, t) still need more fine tuning.
This can be achieved by several methods one of which is to construct a tracking problem with a smooth
bang-bang controller.6 Another approach is to apply notch compensation to mitigate the high frequency
oscillations in the appendage. Several of those ideas can be implemented and tested with the fully solved
frequency response of the system.

11 of 14

American Institute of Aeronautics and Astronautics



0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (sec)

θ
(r
a
d
)

Figure 17. θ(t) Designed Gains
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Figure 19. y(x = 2, t) Designed Gains
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Figure 20. ẏ(x = 2, t) Designed Gains

V. Discussion & Conclusion

The generalized state space approach provided closed form solution for the system frequency response
for both the tip mass and the no tip mass models. Several other boundary conditions can be applied and
the same steps presented here can be followed in order to obtain the analytical solutions. By utilizing the
full transfer function solution provided by the GSS approach any control problem design in the frequency
domain can be addressed. A case study is constructed for the gain selection of a Lyapunov stable control
law. By looking at the frequency response and changing the gains an acceptable performance was achieved
driving the structure from a stationary initial state to a target state while suppressing the beam vibrations.
The examined control law with the selected gains was not able to fully suppress the appendage vibrations
while driving the rigid hub to the desired state. This can be mitigated by constructing a closed loop control
following a given reference trajectory or by applying notch compensation to the control law to suppress
undesirable vibrations.

The presented control problem has potential for several extensions. Optimization was not considered
in this work whereas several techniques exists for optimization in the frequency domain based Parseval’s
theorem. In general the GSS provides a general test bed for any control scheme in the frequency domain.
This is a very powerful tool as it avoids relying on approximate models and truncated series.
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