Generalized Frequency Domain Solution for a Hybrid
Rigid Hub Timoshenko Beam Rotating Aerospace
Structure

Tarek A. Elgohary? and James D. Turner'
Texas AEM University, College Station, TX, 77843, USA

A hybrid system consisting of a rotating rigid hub and a flexible appendage following
the Timoshenko beam assumptions where shear deformations are taken into account is
introduced. Generalization of Lagrange’s equations utilizing Hamilton’s extended princi-
ple is used to derive the equations of motion and the boundary conditions of the system.
Applying the Laplace transform to the integro-partial equations of motion leads to a gener-
alized state space model for the frequency domain representation of the system. The beam
sub-problem is then solved and utilized for insights for the solution of the full system.
Boundary conditions at the beam free end are imposed to obtain the full solution for the
state space model. The solution is used to generate transfer functions for both the rigid and
the flexible modes of the system in terms of the input torque at the rigid rotating hub. No
modal truncation errors are introduced into the transfer function calculations. Numerical
results are presented for transfer functions frequency response using the generalized state
space solution methodology.

I. Introduction

A rigid rotating body with an attached flexible beam-like appendage is a commonly used model in several
engineering applications. A rotating spacecraft with a flexible solar panel is a fairly common system that
utilizes such models.! More recently, such models are utilized in the dynamics and controls of flapping
flight.%3 The flexible structure, usually modeled as a beam, can follow any set of deformation assumptions.
figure 1 shows a hybrid system with a free end beam following the Timoshenko beam deformation assumptions
which includes shear deformation as shown in figure 2. Derivation of the dynamics of such systems relies on
the use of Hamilton’s extended principle along with the generalization of Lagrange’s equations leading to a
system of hybrid, integral partial differential, equations (IPDE).% 410 Solutions techniques presented in these
works are mainly numerical applying finite elements methods and/or the assumed modes techniques to obtain
the natural modes of the coupled system. Numerical solutions in general are approximate and the accuracy
is a function of the number of elements/modes chosen which can impose a high computational cost as the
need arises for more accurate results. Elgohary and Turner have recently presented a generalized state space
model leading to analytic transfer functions. The resulting analytic transfer functions are derived as scalar
variables by manipulating elements of the generalized state space model. The methodology has been applied
to hybrid systems with the beam following Euller-Bernoulli’s assumptions.'* ' The solution is compared to
the numerical assumed modes methods and found to be more accurate with no truncation errors associated
with the numerical technique. Control analysis in the frequency domain utilizing the analytical transfer
functions for the Euller-Bernoulli beam model has been developed and demonstrated.!* Implementing a rest
to rest maneuver for the rotating rigid hub the flexible modes of the beam are driven to stability by gains
selection based on frequency domain gains and phase margins. This technique proved very useful for the
Euler-Bernoulli beam model and has potential extension for other beam theories as will be shown in this
work.

*Graduate Research Assistant, Texas A&M University, Aerospace Engineering Department, 701 H.R. Bright Building, 3141
TAMU, College Station, Texas 77843-3141, ATAA Student Member.

fResearch Professor, Texas A&M University, Aerospace Engineering Department, 701 H.R. Bright Building, 3141 TAMU,
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In this work, the generalized state space methodology is utilized to approach the more complex Timo-
shenko beam model to derive analytical transfer functions that completely describe the system frequency
response without the truncation that usually affects the more commonly used numerical methods. The main
contribution of this work is to derive and solve a generalized state space model for a hybrid system described
by a rigid hub attached to a Timoshenko beam that retains all the frequency content of the system and
provides exact transfer function solutions for the system output given the input torque at the rotating hub.

Y
z
r L
S a(z,t)
M ) e
. /(z,t
Flexible Beam 3 v
Rigid Hub
T
Figure 1. Hub-Beam Model Figure 2. Deformation in Timoshenko Beam

II. Lagrange’s Equations Deriving Hybrid Systems Dynamics

The derivation of the equations of motion for a hybrid system consisting of a single independent spatial
variable and one deformable member (beam like structure) is presented in several works of the literature.!:% 10
The potential and kinetic energies are given by,

l
T =Tp(a,4) + / Targ) dz + Ti (w(l), w(l), w'(1), a0, @) (1)

lo

l
V=Vpb(q,q)+ /l V(arg) dz + Vg (w(l),w(l),w'(l),q,q) (2)

where, (%) p is the discrete portion of the energy describing the rigid body, (x) is the density portion of the en-
ergy, (x)p is a term describing the boundary of the energy functions, q and w are the generalized coordinates
describing the rigid body motion and the flexible motion respectively and arg = {w,w,w’,w” q, q}.

The Lagrangian can then be written as,

!
L=T-V=Lp(q,q) +/ L(arg)dz + Lp (w(l), w(l), w'(1), q, 4) (3)

lo

where, LD :TD—VD, iZT_‘A/ and LB :TB —VB.
The non-conservative virtual work can then be expressed as,

l
SWe = QToq + / 7 (z)ow(2) do + £, "ow(l) + £ 0w’ (1) (4)

lo

where, Q is the non-conservative force associated with the rigid coordinates, q, f is the non-conservative
force density associated with the flex coordinates, w, f; is the non-conservative force applied at the boundary
and f5 is the non-conservative torque applied at the boundary.
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The extended Hamilton’s principle is given by,

/ (L4 6We) dw = 0 (5)

ty

Applying the extended Hamilton’s principle and performing the analytical integration by parts.” 19 A hybrid
system of equations of motion is extracted as,

d(oLy oL o,
dt \ 0q oq

- . A A 6
a (oL ob o (oL o (oL _g o
dt \ ow ow Oz \ ow’ ox2 \ ow" |
The boundary conditions are also derived from Hamilton’s principle and are given by,

~ ~ l
OL 0 oL OLp d OLp T _
law’ "o (aw) W’l + [awa) T <8w’(l))] dwil) + 1 ow(l) =0

. l
oL ,
D’ ow

0
From the above development the equations of motion of a hybrid system with one spatial independent
variable and a single flexible body can be derived along with its associated boundary conditions. Next,
those steps are applied to derive the equations of motion for the system of interest shown in figure 1 while
accounting for shear deformations of the Timoshenko model shown in figure 2.
III. System Equations and the Generalized State Space Model

The kinetic and potential energies of the system in figure 1 are given by,!

T = Ty + Tappendage

1 o 1t N oI\ /. 2 (8)
T_alhubQ +§/0 p(y+(m+r)6) +(A> (a—i—@) dx
1t N2 N2
V:§/ ElI ()" +KGA(a—vy') dx (9)
0

where, F is the beam Young’s modulus, I the moment of inertia of the cross section about the centroid axis,
p the beam mass per unit length, k& the shear coefficient, G the modulus of rigidity, A the area of the beam
cross section, r the radius of the rigid hub, L the length of the flexible appendage, Iy, moment of inertia of
the rigid hub, 6 the hub rotation, y the beam deformation and « the rotation of the cross section for shear
deformation. The Lagrangian is then expressed as,

L=T-V

1 o 1 L . -\ 2 pl .o\ 2 "2 N2
= STt +§/O p(y+(a:+r)9> +(A> (a+9) _BI()? — KGA(a—y)? da

(10)

Following the same notation in the generalized derivation presented earlier, the hybrid system coordinates
are expressed as,

aty=6  wia,t)=[y, of" (11)
With the forces given by, .
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Applying Lagrange’s generalized equations and Hamilton’s extended principle, the hybrid system governing
equations are derived as,

Ihubé+/Lp(9:+7’) (y+(x+r)0)+<if) (d+9> dz =u
p(i+ (@+n)d) + KGA(a' = y") =0 (13)

%(oﬂr@) +KGA(a—y')—FEIa" =0

With no boundary dependent terms in the Lagrangian, the boundary conditions for the system are,

at =0 y=0 , a=0

(14)
at x=L FEld[;,=0 , KGA(a—1y)|,=0

Taking the Laplace transform, represented by p, for Eq. (13) and performing integration by parts to remove
the spatial dependency from the integral term, the first equation in Eq. (13) representing the rigid body
motion can be expressed as,

2 Inun + 1 gdr — [| 7 12p _ 0Pl [ 2L 5
thubG—kup[(x—H")/ydx ffydwdx] 3 {(L—H’) }G—k,u 1 adz + p AL0 (15)

A Generalized State Space (GSS) model is developed as,

2z = [[ygdade 2} =z

2o = [adz 2h =24
= [gdx 2h = z5
21 =a 2y = 26 (16)
25 =17 2t = 27
26 =a zg:(g—Jr 1)07 W0 — ECAY — (4 4-T) 24 + b — Tz
=1 2h = ”2 iy + m§)+ :ﬁ(z5+:r9)+26
where, § = K"—;A, Y = % and the constant I' = KE—G}A. The state space is generalized in the sense that

the states consist of variable, spatial partial derivatives of variables, and first and second order integrals of
variables, which mix solutions at points in the flexible body domain with global response variables. In terms
of the GSS variables the boundary conditions are defined as,

Z(O):[O 0 0 0 0 2z 27r

(17)
z6(L) =0 z4(L) — z7(L) =0
The state space form of Eq. (16) is represented as,
[0 0 1 0 00 0] 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
{zZ}=10 0 0 0 0 1 0 |{z}+ 0 =[A]{z} +Db (18)
0 0 0 0 0 0 1 0
000 (+T) 0 0 -I »l
0 0 0 0 g 1 0] Bl

where only constant coefficient matrix and vector components appear.
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IV. Solution of the Generalized State Space Model

Equation (18) has the well known solution,

L
z(x) = exp(Ax)z(0) + /0 exp (A(L — 7)) b(7)dr (19)

The solution of Eq. (19) is realized once a solution is provided for computing the matrix exponential terms.
To this end, a two-step process is introduced. First, by examining the eigenvalues of the beam sub-problem

q =Cq

<
_|_
sy
™ O o ©
o
I
=

The eigenvalues for the sub-matrix are obtained as,

11/28+ 20 +2\/B% — 2B + 47 — 45T
~1\/28 + 20 +2/F7 — 2B + o7 — 40T
11/28+ 20 — 2,/BF 2B + 4% — 4BT
75\/2ﬂ+2wf2¢52f25w+w274ﬂr

A = Diag (21)

C can then be expressed as C = VAV ~! where V are the eigenvectors of C. By using this eigen decomposition
technique the matrix exponential of C' needed in Eq. (19) is computed as

exp(Cz) = Vexp(Az)V ! (22)

By defining the recurring expressions obtained from the beam sub-problem eigenvalues as,

a=+/B2—2BY+ 2 — 46T
A =2a+26+2¢ (23)
n=+—2a+26+2¢

The matrix exponential problem in Eq. (19) is solved via symbolic manipulations by expressing the full
solution in terms of the recurring expressions in Eq. (23). The resultant is further simplified as a set of
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hyperbolic functions and their coefficients for each element of the matrix exponential,

[eXP(AZC)h..J,L.A =

[1 0 = pssinh($Az) +posinh (dnz) +ps cosh (3nz) ps + cosh (2Az) ps + ps

0 1 0  pigsinh(iAz) +pigsinh (Inz)  cosh (3nz) pig + cosh (2Ax) pis + pi7

0 0 1 cosh(4nz)pas+cosh(3Ax)pas+pas  paesinh (3Ax) + porsinh (3nz)

0 0 0  cosh(3nz)pss+ cosh (3Az) pss p3s sinh ($Az) + psg sinh (§7z)

0 0 0  pasinh(3Az) + p42sinh (392) cosh (§72) paa + cosh (§Az) pas

0 0 0  pagsinh (3Az) + psosinh (1nz) cosh ($nz) ps2 + cosh ($Az) ps1 o)
| 0 0 0 cosh(4n®) pss + cosh (3Az) psr pso sinh ($Az) + peo sinh (§7z)

[eXP(Ax)h...m..J =
[ cosh (3n2) ps + cosh (3Az) pr +py prosinh (3Az) + i1 sinh ($nz) + p12 |
cosh (512) p1o + cosh (5Az) p1s + p2o pa1 sinh (3Az) + peg sinh (3nz)

pas sinh (3Az) + pag sinh (572) cosh (4nz) pa1 + cosh (Az) pso + ps2

p37 sinh (%)\x) + p3g sinh (%nx)
cosh (2nz) pas + cosh (3Az) pss
cosh (%nx) ps4 + cosh (%)\x) P53
Pe1 sinh (%)\x) + pg2 sinh (%nm)

cosh (%nx) Ppao + cosh (%)\I) P39
paz sinh (3Az) + pas sinh (3nz)
P55 sinh (%)\m) + psg sinh (%nm)
cosh (3nz) pes + cosh (2 Az) pe3

The p coefficients result from the symbolic generation of the matrix exponential. These expressions are
provided in detail in the Appendix. With the full analytical solution of the matrix exponential available,
Eq. (24), the homogeneous and the forced solutions of the GSS system is obtained as,

Zg = exp(Ax)z(0)

[ (cosh (%nx) ps + cosh (%)\x) p7 + pg) z6 + (p10 sinh (%/\x) + p11sinh (%nm) +p12) 27 ]
(cosh (%nx) P19 + cosh (%)\x) p1s + pgo) 26 + (pgl sinh (%)\x) + pog sinh (%mj)) 27
(pgg sinh (%)\x) + pag sinh (%mj)) z6 + (cosh (%7733) p31 + cosh (%)\m) P30 + p32) 27 25)
25
Zy = (p37 sinh (l)\x) + p3g sinh (%nx)) 26 + (cosh (%mj) P40 + cosh (%/\x) pgg) 27
(cosh (% )p46 + cosh (%/\x) p45) 26 + (p47 sinh (%/\x) + pyg sinh (%nx)) 27
(cosh (% )p54 + cosh (%/\x) p53) 26 + (p55 sinh (%/\x) + psg sinh (%nx)) 27
L (p61 sinh ( )\x) + pg2 sinh (%nm)) 26 + (cosh (%771:) Pea + cosh (%/\x) p63) 27 i
The forced solution is then derived as,
L
Zp = / exp (A(L — 7)) b(r)dr
0
0 1, ]
0 I
L 0 I3 (26)
szé/ exp(A(L—7)< 0 pdr=|I,]|0
0 0 Is
P Is
BT _I7_

where the exact expressions for Iy, ..., I7 are not shown here for the sake of brevity and can be easily obtained
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with any symbolic math software. Applying the boundary conditions at the beam end provides the required
equations to evaluate the initial zg, z; and obtain the full solution for the GSS system of equations.

1 1 1 1 =
cosh (277L) ps4 + cosh <2>\L> p53) z6 + (p55 sinh <2)\L> + pse sinh <2nL>> 27 + Il

1 1 1 1 ~
— |:<p61 sinh <2>\x> + pgo sinh <2nx>> 26 + (COSh (277:E> Pea + cosh (2)\x> pgg) 27 + 179}

(27)

Equation (27) represents a linear set of equations to solve for zg, z7 and complete the full analytical GSS
solution as,

—1
cosh (L) psa + cosh (AAL) ps3 psssinh (ML) + pse sinh (1nL) —1Is
(p37 — pe1) sinh (3Az) + (pss — pe2) sinh (3nz)  cosh (3n2) (pao — pea) + cosh (3Az) (P39 — pe3)

(28)
This yields the full solution for the GSS model in Eq. (18), where the generalized state variables are expressed
as a function of the defined system parameters, 3, v, " and the dependent variable x with 6 appearing linearly
in the solution as a result from evaluating the convolution integral in Eq. (19) as,

z=g(z,B,9,T)0 (29)

T
where, 8 =| g1 g2 93 94 95 e 97}-

V. System Transfer Functions & Frequency Response Results

As shown in Eq. (29) the state variables of the GSS model are expressed in terms of the function g. From
Eq. (15) the transfer function for 6 in terms of the input torque @ is expressed as,

- ! (30)

p? {J +plz +1)g3 — pg1 + 2 g0

S T

GlE

where, J = Iy + £ ((L +7)3 — r3) is the generalized inertia expression. The transfer functions for § and &
can then be obtained from

Il
)
]

<
I

gs
g4

ot

: (31)

I
]
N

Qi
Il

= g5G1
4 = g94G1

Hence the appendage deflection and shear angle transfer functions can be obtained from the input torque
as,

G2 = g = 95
o2 [J +p(x+1)g93 — pgr + %92} (32)
_ 32
Gy = g _ 94
a

2 {J +p(x +7)g3 — pg1 + %gz]

This development produces a full analytical expression for the system flexible modes in terms of the input
torque at the rigid hub. The flex response natural modes can then be extracted from the above analytical
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transfer functions with no truncation that usually affects numerical approximations. As a numerical example
the frequency response of the system transfer functions are evaluated for the set of physical parameters in
table 1

Table 1. System Parameters Values

Parameter Value
Thab 8 slug-ft2
p 0.0271875 slug/ft
E 0.1584 x 100 1b/ft?
L 4 ft
r 1 ft
I 0.47095 x 107 ft*
m 0.1569 slug
Liip 0.0018 slug-ft?
K 5/6
v 0.3
A 7.5176 x 1074 ft 2

where the modulus of rigidity G can be obtained from Young’s modulus and Poisson’s ratio as G = ﬁ
Substituting with g = jw into the transfer functions in Eq. (30) and Eq. (32) the frequency response of the
hybrid system is obtained. Figure 3 throught figure 5 show the frequency response for G;(jw), Ga(jw) and
G3(jw), respectively.

1G1(jw)

—-25

10 = : ““““1 ‘ ‘ =
10 10 10 10

Figure 3. G Frequency Response

As shown the complete frequency response of the system transfer functions is obtained. The flexible modes
experience resonance at their natural frequencies which can be notched out when considering controlling the
flexible appendage. This development can also be extended to address the control problem of the hybrid
system in the frequency domain to drive the rigid state while controlling the resonant modes of the flexible
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1Ga(jw)|

1Gs(jw)|

Figure 4. G2 Frequency Response

Figure 5. (G3 Frequency Response
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states.

VI. Discussion & Conclusion

The generalized state space approach provided closed form solution for the system frequency response
for Timoshenko beam model. The coupled bending/shear beam sub-problem is first used to obtain the
eigenvalues and identify the form of the block structure of the matrix exponential solution. The homogeneous
and forced solution of the GSS model are obtained from the matrix exponential analytical expressions. The
GSS is then fully solved by applying the boundary conditions at the beam end and evaluating the unknown
initial conditions. By extracting the elements of the GSS model and using the original system of equations
of motion, analytical transfer functions are obtained form the system output in terms of the input torque
at the rotating rigid hub. It is important to note that only scalar operations are required to generate the
system transfer function calculations. Several other boundary conditions can be applied, e.g. beam with tip
mass, and the same steps presented here can be followed in order to obtain the full analytical solutions for
the transfer functions. A set of physical parameters are introduced and the frequency response is obtained.
By utilizing the full transfer function solution provided by the GSS approach any control problem design in
the frequency domain can be addressed. A general control objective would be to drive the rigid hub through
a rest to rest maneuver while controlling the natural modes of the flexible appendage(s).

The presented solution methodology is accurate and provides a means for control systems design in the
frequency domain. As an extension to this study the analytical solution is to be compared with existing
numerical methods like the assumed modes methods using eigenfunctions of the clamped-free Timoshenko
beam. The control problem in the frequency domain by using the frequency response and the phase angle
information for gain selection to meet a specified control objective will also be studied and presented in
future works.

Appendix
A. Coefficients of the Matrix Exponential Solution

In this section the coefficients of the matrix exponential solution are fully expressed in terms of 3,1, T’
and the predefined variables in Eq. (23). First the following two quantities are defined.

)\4 8
Dr = O[fi477
33
D B 705)\57711 ( )
2= —5g
123
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The set of coefficients in the first row of the matrix exponential solution, pi,...,p12 can then be expressed
as,

_—an+B8n+ny
p1= Ban
_—aA—BA= Ay
p2 = Ban
_*
p3—ﬂ
Py = _13)26 [2T%8% + I?BPa+2T°BYa — % + T?B%) — AT?BY* + T a + 2T B¢ °a
1
T’ — % —TB%)? = 5T0B¢° + Tyt — ¢ta — Bt +4°]
mz%ﬂg[QF?’+F2a7F25+5F2w+2Fa¢72F5¢+4Fw2+a1/12—6¢2+1/13]
1
p6:32Dﬂ [2T%8a —4T?8* —4T?B4y — aTB> +2aTBy — T’a + % — 5T %) — 5 BTy)?
1
+Ty% — a B2y — ap® + B2 — B2¢° — B° + ]
p7:312)—5 [MBa—3I28% — 3128y —alB? —Tp?a+T8°
1
—308%) —3BTY? +T® — a ) — aBy® — av® + g2 + ¢
2
po = 2 [P0 — T8 — [0 + 2Ta — 205 — 200 + av? — B¢ — 7] (34)
pgz_;zﬁ [2T%8a —4T%8% —4T%B4y — aTB*> +2aT By — T’a+ % — 5T B%) — 5 BT'y)?
1

+T9° —a B2 — ay® + B¢ — 2% — By + 4]

128
pro = Dfn [21—1452+F3al82+2F3aﬁw_F363+3F362w_4r361/}2+2F2a52¢

+4T%a ByY? —T2ay® — 21283 — 9128 ¢° + T2t + Ta 22 + 2Ta fp® — 2Ta ¢

—T3%* —Tp** —6TB¢* +2T¢° —av® — B¢ +¢°]

128 B2\
Dy

+ 272920 + 1252 — 9T25%¢) — 2722 — 2T B2 a4+ 2T B 2 + Tda + 2153y — 6 T 5%°

—Tpy® =Tt — B2y%a + 2y — B2

7_645)”” [4T6% + 3T 5% + 3T B¢ — 5T°6° + 6I°3% — 5T959? — [Pa f?
2

+6T%a %)+ 6T2a By —T?ay® + 7281 — 111283 — 1172893 +T2* — 2Ta 539
+3Ta Y +3Tapy? —2Tay* + 2T8% — 7T 332 — 2T 5% — 71T B Y4
+209° — a B2y — ayp® + B — BPy° — By° + 4]

pi = 2T*8+ 2B a+ TPy —4T?B2 + 318y — ¢ —T?f2a + 4T8¢ o

P12 =
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The second row coefficients, p13,...,p22 are given by,

P13

P14

P15 =

P16

pir =

Pbis =

P19

Pb20

Pp21

P22

—128 5%
Dy
+T%9° +T?a 82 — 6T%a f¢ — 3Ta f¢* — 2Ty’ —T28% + 11 T2 3% — 312 4%
— 12893 + 2729 + 2Ta B2 — 3Ta B2? — 2Ta By — Tay? — 2T8%)
+708%¢% + TB%¢° + TBY* + Ty° + a B2y — B*¢° + °¢°]
128 8%\
Do
+3T%a By? — 3T%ay® — 3T28%)% — 121%8¢° + 3T%* + Ta By® — 3Tay?
—Tp%¢° —6TBY* +30Y° — ay® — B° + ¢

Map—51"6% — 318y — 3T%a B? —TPay? + 51°6% — 9T %) — 5133 ¢)?

[Tap —T*8% =308y +3T%a By — May? — 3T38%) — 101382 4+ Iy?

= _312;52 [[28a - 30237 — 31284 — aTB? — I'?a
1
+I'8% —3T8%) — 3BTy + T — a %Y — a BY® — ayp® + B2 + ]
_ _?%Mg [0 —T28 —T?%) + 2Tay — 208 — 2192 + ay? — fop* — ]
1
_SZDLBQ[21‘2604—41‘262—4F26¢—a1‘62+2afﬁ¢—r¢2a+rﬁg—5F521/’
1
—5ATY? + TY® — a2 — a v + 3 — B20% — By° + 0]
- ng 2738 +2T2Ba + Mayp — 47262 + 284 — T2y? — aTB% + 2aT By + T a
+D8% = 5TB%) — BTY? — Ty — a f2y + f2y — 527
_ 3252 [2T38 + T2t + 5T2B ¢ — T2% + 2T9%a + 4 BT — 2T + a ® + Bo° — ]
1
:%ﬁ[2r26a—4r2ﬁ2—4r25w—ar62+2arﬂw—F¢2a+F53—5Fﬁ2¢—5ﬁw2
1

+T9° — a 2 — ayp® + B2y — 820 — B + ¢
128187
D,

— 62892 + T2 —2T%p a —TBY%a — 2T a + 2T 3% — 3T %2 — 3T y° + 2Tyt
—B**a —a By’ —vra + B + o)

_ —128Tp3%\

D,

— 62892 + T2 — 2% a —TBY*a — 2Ty3a + 2T 3% — 3T 5% — 3T 3
+209* — 2o — a By — Pla+ 2y + ¢

MBa—30°3% —3I°B¢y —T?BPa+ T?Bya — I+ T28° — 6T%5%)

M8 —3I°B% —3I°B¢y —IPBPa+ 2B a—T*pa+T28° —6T%5%)
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The third row coefficients, pos, ..., p32 are given by,

P23 = 312)—6 [M*Ba—3T%% —3T°By — T?BPa + B a — TP a + I25° — 6I%5%)
1
—6I?8¢° + I%y° — 2T 8% a —TB¢*a — 2T a + 208% — 3T %Y — 3TB¢° +2Ty?
—Aa —a By’ —yla + B + )]
32 52
Dy
+3T9%a — 3 BTY? = 3T¢% + ay® — By — 4]
P25 = %Qﬁ [2T%Ba —4T?B% —4T?By —T?B%a + 4128 a — T?p°a + I28° — 92 B%y)
1
— 91239 + T%)® — 2T 3% o+ 2T B9 a — 2T + 2T 8% — 6T 3% — 6T B4° + 2Ty
—AHa —pla+ g7 — B0 — Bt 47
128 321
2

Doy = Mo =T33 — Ty + 3%y — 31281 — 3073

pas = 208 +T%a B2 + 2% By — T2 + 3T° 3% — ATP B¢ + 2T%a B2y
+4T%2a 89 —T2ay® — 20283 — 9128 4% + T2¢* + Ta 2% + 2Ta 41
—2Tayp* —T%¢? =T —6TB¢* +2T9° —ay® — B° + ¢°]

128 B3\
2

par = [2T'8+2T%Ba+ Pay — 4382 + 3138y — IP? —T?B%a +4I?B Y«

+2F2¢2a+f‘253—QFQﬂzw—QI‘Zw‘g —2F62¢a+2F6¢2a+F¢3a+2Fﬂ3w

—60B8%y* —TBy° — Tyt — B2y%a + B2y? — %P

—128 8%n
D,

— 62892+ T2 —2TB%Ya —TBY%a — 2Ty3a + 2183y — 3T 5% — 3T 3

2Tyt — B*pPa — a fy° — yta+ BP% 4+ ¢°]

128 82\
D,
— 6282 +T23 —2TB%p a —TBY%2a — 2T 3a + 2T B3 — 3T 3?2 — 3T B Y3

2Tyt — B*Pa — a fy° — yta+ BP% 4+ ¢°]
P30 = %215 [T3Ba -T2 =338y + 2T a — T2p?a — 2T2 6% — TT2B 4% + 2

+IB¢%a — 2T3a — TB%Y? — 5TR Y + 2Ty* — yta — Bt + 4]

P2s = [TPBa—30°6% —30%8¢ —T?Ba+T?Bya —T*pa + I?6° - 6T25%

P20 = [[PBa—3T°6% = 30289 —T?B%a+T?Bya —T*p?a + T?6° - 6T25%

P31 = _‘2252 Ma—3T°8-I% —I?Ba+20Pay + 6% - 7TI°By — 2T%* —2a B¢
1
+T9a + 2T8%) — 5 T2 — T® — a B2 + B2¢° — B4

P32 = 3[2)75 2T°Ba —4T%8% — AT’ By —T?B%a + 4TSy a — T a + [24° — 9T?5%)
1

— 92892 + 123 — 2T % a + 2T B % — 2Ty a + 2133 — 6 T %% — 6T B3
+2Ty* = BpPa — ¢ha + B2y° — B2y — Byt 4 7]
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(36)



The fourth row coefficients, pss, ..., pso are given by,

—32 32

P33 = 278+ 2T%Ba+ TMay — 4T3 + 3138+ — [39? —I2B%a + 41284 a + 2% a

+ 1283 —9I2p%) — 27293 — 2T 5% a + 2T B V%o + Tp3a + 2T B3y — 6 T 24>
—Tpy® — Ty — B*¢%a + B2¢° — B%y°]

32 52
Dy
—30%¢% + 3T+ 5TB¢° —3TY* + ¢la+ Byt — ¢°]
128 T 337
Dy
— 628 ¢% + 123 —2TB%pa — T p%a — 2T a + 2T B3y — 3T 3%¢% — 3T 3

+2T9" — 2Pa — a B9° — pla+ 297 + ¢°]

—128T33\
Do
—6T28%¢) — 6T28¢% +T2¢® — 2T 8% o — TB Y2 — 2Ty a + 2T 8%y — 3TB%¢% — 3T ¢°

+2Ty" — 2Pa — a B9° — o+ 2¢% +¢°]
128 3

Pas = 218+ T%ay + 7?8y — T3? + 3T%%a + 9121

P3s = [[PBa—3T°8% —31%B¢ —T?F%a + T2y a - T*p?a + T?4° - 6T25%

P3G = [I\B/Ba_?)l-\?)ﬁ?_SFBBw_F262a+r2ﬁwa_r2w2a+r253

ps7 = 2084+ 2T°Ba+TPay — AT +30%8y — I —I?B%a + 4128y
+ 2220 4+ 1232 —9T23%¢) — 2T2)® — 2T % a4+ 2T B Y%+ Tpda + 2T 53y — 6 T 3242
—Tpy° =Tyt — B2¢%a + 2¢? — B%¢°]

128 32\

P3g = (20B% + T3ap? +2T%a By — 4% + 317 %y — AT By + 21%a B2
+4T%2a 92 —T2ay® — 20283 — 9128 ¢ + T2¢* + Ta f2¢% + 2Ta 43
—2Tay?* —Tf%* —T%Y° —6TB¢* +2T¢° — ay® — B1p° + 4]

32132

pss = 2T%8 4+ DB + T2y — [?52 4 4T3 ¢ — T2y
+2aTBy + 2T — 2T %) + 2 BTY? — 2T + a fyp? + ap® — B2y? — Y]

_312;62 2T°8 4+ I?Ba+T?ay —T?8% + 41284y — T%)* + 2a B¢ + 2T¢%a — 2T 3%
1

+2T9? —2T9° + a fy° + ay® — f29? — ']

Pao =
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The fifth row coeflicients, p41, ..., p4g are given by,

Pa1

P42

D43

Pag

DPas

D46

Da7

Das

= _12;52" [TMap—30% — 318y —IMPap® +2I%a By —Pay® + 7% — 9T35%)

—9T?B¢? +T%¢° — 3T%a %y — 3T%ay® + 3T 4% — 9T24%? — 9?57

+ 302" —3Taf?yY? —2Ta ¢ — 3Tay? + 3T33%)? — 3T%3 — 3T + 3T

—a B*Y° — a Byt — ay® + BP° + ¢°]

_1283%)
Dy

—9T38%) —9T?B4p? + T%¢° — 3T % — 3Ty’ + 3T%5%) — 9T25%y° — 91?57

+30%)* —3Ta %? —2Ta fy® — 3Tay* +3T63%? — 313%y% — 3T y*

+3T9° —a f2Y° —a Byt —ay® + 797 4+ ]

Tap—30* —3IBy —TPap? + 2T%a By —Pay? +1°5°

- ?gfz (T3Ba — %82 — 3T + 2T2B ¢ o — T2%a — 2T2F%) — TT2Fe? + T2
+I8¢%a — 2Ty3a — TB%Y? — 5TR Y + 2Ty — yla — Byt + 7]
— _3;153 Mo —31°8—I% —I?Ba+20Pay +I°6% —7TI°By¢ — 2T%° —2a By
+TY a4+ 205%) — 5 8Ty — T — a B¢* 4 B%¢° — B¢°]
= _%152 2028+ T?Ba+T2ay —T28% + 4128 ¢ — %)% + 2aTB ¢ + 2T a — 2T %)
+28T9? = 2T9° + a 9° + ay® - g9 — ]

32 2

5 2038+ T8 a+ T2y — 282 + 4128+ — I%9? + 2a B¢ + 2T¢%a — 2T 5%
1

+28TY? = 2T + a Bp* + a® — §7¢% — ¢
= 12%7/32” Tap—T"% = 3T"B¢ +3T%a By — TPay® — 31°% — 10I°By°
2

+ 3% + 3120 B¢? — 3T%ay® — 3T28%¢% — 12T28¢° + 3120 + Ta f¢® — 3Tay?
—Tp%¢° —6TBY* +3TY° — ay® — B° 4 9]

—128 B2\

D,

— 589 +T%¢° + T f° — 6T%a f — 3T f9* — 2Ty’ — T8 + 11T %)
— 302522 — 12893 + 2T2¢* + 2Ta B3¢ — 3Ta B2? — 2Ta By — Tay* — 2T 8%
+7TB%? +TA%Y° + TR +T9° + a f* — f9° + 8747

Map—5018% =308y — 3T 8% —TPayp® + 5I°B° — 9%y
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The sixth row coefficients, p4g, ..., pse are given as,

Pag = 208+ 2Ta B+ Tay — 4T B2 + 518y — T —TPa B +61%a By

128 337
2
+3T3a? + 383 —13T36%) 4+ 313892 — 3T3% — 3T2%a B2 + 6 T?a B2 + 3T%a 3
+30283%) — 15T28%¢% —T28¢°% — 3T%* — 3Ta 2% + 2Ta B¢ + Tay* + 3T 33>
—70B%Y° —TB¢* =Ty — a 2° + 2° — g%y
12882
2
+6T%a By? —T3ay® — 3T%B%) + 3T98%¢° — 13T 8% + T9* + 3T%a f%)°
+6T%a 8¢y% — 3720yt — 312832 — 1252 — 1517289y + 3T72¢° + Ta g2¢°
+2Ta fy* — 3Tay® — TE%Y% — T%p* — TTBY° + 3T¢9S — ay® — B4° + 7]
32180
D,

+28TY% = 2T + a Bp? + ap® — B2y? — ]

P50 [2T°8% + T a B? + 2T a By —T'B% + 5T %) — AT ByY° + 3T%a %

P51 2038+ T2B8a + T2aty — 242 + 41284y — T29? + 2a DBy + 2Ty?a — 2T 5%

Ps2 = _312;63 2038+ T8 a+ %y — 282 + 4128+ — 2?2 + 2a DB + 2T%a — 2T 8%
+2BTY? — 2T + a fp? + ayp® — B2y* — ?] (39)
Ps3 = —:’glﬁ?) Mo —3T°8-T% —TI?Ba+2l%ay + % —7T°By — 2T%° —2aTBY
+Ty%a +2T5%) — 5 BTY? —T¢° —a B¢ + g2¢° — By°]
Psa = _3§f2 8o —T38% = 30384 + 2128 a — T%p2a — 21242 — TI2B¢% + T2y°
Ty a — 2Ty’ —T%? = 5TH¢° + 219" — gta — B9t +¢°]
P55 = _1221;63” 218+ T*Ba+T%ay — 1382 +6T°8¢y — T3 + 3128y a + 3T

—3T28%) + 6284 — 3T + 3T ¢%a + 3Ty a — 3T %% + 2TB¢° — 3Ty

+a By® +pta — 2y° — ¢

~ —128T3%\
Dy

+3F204ﬂ1/12—F204¢3+F254—8P253¢—6F252¢2—8F25¢3+F2¢4

—2Ta B3 — 2T ay* + 2T 8% — ATB3? — AT %% —ATBY* + 2TY° — a g34?

—a B2 —a Byt —a® + g% + ¢°]

D56 [2T43% +2T%a 8% + 2TPa By — 4T%B% —4T?By* —TPa B° + 31%a B
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Finally, the seventh row coefficients, ps7, ..., pgs are

P57 = _‘ZBQ 2T*8+I3Ba+T?ay — T2 + 61381y — 32 + 3728 a + 3T%y%a — 3128%)
+ 612892 — 37293 + 378 ¢%a + 3Ty3a — 37522 + 2T Y3 — 3Tyt + a g
+ta — BP° — 7]
Psg = 32?2 208+ I3Ba+T?ay — T2 + 6381 — [39? + 37?89 a+ 3T%Y%a — 3125%)
+6T264% — 3T%)3 + 3TB¢%a + 3Ty3a — 3T %% + 2134 — 3Tyt
+a By’ +la— g2y — 4]
= 12%53" [T*ap—T*3% =389 +3T% B¢ —May® —30%5% — 10138 ¢° + T%y°
+3T%a 892 —3T%a 3 —312p%% — 1212843 4+ 3T%* + Ta fy® — 3Tay?
—Tp%¢° —6TBY* +3TY° — ay® — B° 4+ 9]
~—1288%)
Dy
+ %% + T?a % — 6T%a % — 3T f9* — 2Ty’ —T28* + 11T 3% — 312 4%¢?
—T28¢3 4+ 272 + 2Ta 3¢y — 3Ta f2yY? — 2Ta B3 — Tay* — 2T 8%
+70B%Y% + TB%Y° + TB¢* + Ty° + a B¢ — B + 8%¢°] (40)
128 8%
Dy
+6T28¢9% — 3023 + 3T ¢3%a + 3T — 3T 3%y?
+2084% = 3T + a B® + y'a — B¢ — ¢°]
12882
Dy
+3T%a By —T?ay® + 128 —8T7B%) — 6I°4%)” — 87 B4° + IPy*
—2Ta B3 — 2T a¢* + 2T 8% — AT 3?2 —ATB%Y° —ATB* + 2TW° — a 342 — a f2?
—a Byt —ay® + gy 4+ 40
322
1
+30¢%a + 578y — 39" + yla + Byt — 7]
322
D,
+ 1233 — 91262 — 217293 — 2T % a + 2T %a + Tyda + 2T 83 — 6 324>
TR ¢° — Ty — B2Pa+ B2* — g2

D59

D60 TMap— 5167 —3T"8y — 3T%a % —TPay? + 5176 — 9T %y — 533 ¢?

De1 208+ T38a+TPay — T2 + 6181 — I3? + 31289 a + 3T%y%a — 3125%)

D62 [2T3% +2T%a B% + 2TPa By — 4138 —4T?By* —T%a B2 + 31%a B2

D63 218+ T%ay + TT°B ¢ — I3 + 3T%¢%a + 912 B¢? — 3T%¢°

Dea 2184 2T%Ba+Pay —4I38> + 31°8¢ — IPY® —T?B%a + AT ByY a + 2T a

It must be noted that these expressions can be simplified further by exploring the recurrence of terms in the
various coefficients. For example, there is a clear repetition in the coefficients of the diagonal terms that can
be combined and reduce the total number of the presented coefficients.
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