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HIGH ACCURACY TRAJECTORY AND UNCERTAINTY
PROPAGATION ALGORITHM FOR LONG-TERM ASTEROID
MOTION PREDICTION

James D. Turner’ Tarek Elgohary? Manoranjan Majji’
John L. Junkins*

ABSTRACT

Asteroid mitigation strategies fundamentally depend on understanding accurate
predictions for the asteroid motion as it approaches the neighborhood of the Earth.
Accurate calculations require multi-year estimates for the object’s trajectory. Equally
important, however, one needs uncertainty envelope predictions that bound the ex-
pected range of variability in the time of arrival and proximity to the Earth. Hun-
dreds of papers have investigated algorithms for ensuring that highly accurate mo-
tion predictions are generated. Because the fundamental equations are nonlinear,
a repeated sampling of the system acceleration solution is invoked in order (o pre-
dict the expected range in variability in the asteroid’s position and velocity at fu-
ture times. Examples of this approach include predictor-corrector and Runge-Kutta
methods where many samples are combined to provide a weighted approximation
for the motion predictions. Classically it has proved to be difficult to derive and
code high order models for the two-body accelerations. The main contribution of
this paper is the demonstration that by defining Lagrange-like invariants easily de-
rived analytical models are developed for exactly computing the two-body acceler-
ations to arbitrary order. With arbitrary order time derivatives available, it is further
shown that one can develop a rigorous analytical Taylor series based solution for
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propagating the position and velocity vectors for the nonlinear two-body problem.
The key algorithmic innovation is the recognition that the proposed Lagrange-like
invariants can differentiated to arbitrary order by using the well known Leibniz
product rule. Several numerical examples are presented to demonstrate the effec-
tiveness of the proposed algorithmic solutions.

1. INTRODUCTION

The two-body equations of motion are integrated by evaluating an analytical Tay-
lor series, where exact arbitrary order time derivatives of the acceleration equations
are computed. The time derivative models are developed by introducing Lagrange-
like invariants that are easily differentiated by invoking Leibnitz product rule. As
with any series-based approximation there remains an open question regarding the
convergence of the approximation. Numerical evidence is presented that demon-
strates that the proposed series approximations allow large integration step sizes
and maintains high accuracy. In deed extended precision calculations have gen-
erated solutions that are accurate hundreds of digits. Both the classical Keplerian
two-body and perturbed acceleration force models are readily handled ' " where the
numerical solution for each derivative order is accurate to the working precision of
the machine.

Classically the generation of arbitrary order time derivative models has been hin-
dered by the complexity associated with handling fractional powers of complex
vector-valued arguments. This complexity barrier is overcome by introducing two
scalar Lagrange-like invariant ' (i.e., f = r.r) and the transformation of the scalar
variable ¢ = f~"/? into a differential equation where all fraction terms are elim-
inated, where time is the independent variable. Leibniz product rule is directly
applied to f, where the product is the vector dot product. After developing the first
order differential equation for ¢ Leibniz product rule is again invoked to recursively
generate the composite function rates for f, f f y...and g, g. g, .... With recursive
solutions available for f and g one can recursively generate vector solutions for
r. i ¥, for arbitrary order. Higher-order gravity perturbations are easily han-
dled.

With the generation of the position and velocity vectors handled by highly accurate
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series approximations, the next issue is concerned with investigating the expected
range in the uncertainty associated with the initial conditions. To this end, the
two-body trajectory uncertainty is handled by generating nonlinear state transition
tensors for propagating the initial condition uncertainty in the integrated system re-
sponse. This approach samples an initial covariance and propagates the variations
to the desired future time. The system statistics are recovered by introducing a
nonlinear transformation for mapping the evolved initial condition uncertainty into
expected variations in the mean motion and motion covariance matrix. The solution
for the instantaneous system statistics is mechanized by introducing a high-order
vector reversion of series for the tensor-based state transition model for the ini-
tial condition uncertainties. The resulting solution effectively solves the stochastic
Liouville equation for the probability density of the solution along the motion tra-
jectory in presence of low diffusion effects. Two major contributions are presented
in the paper: (1) arbitrary order analytic time derivatives for the two-body problem,
and (2) an uncertainty propagation method for developing a probability density
function that accounts for the non-Gaussian behavior resulting from the systems
nonlinear math model.

Data Structures: All of the algorithms to be developed require high-order deriva-
tive models. Computationally high order derivative models are analyzed by defin-
ing vector-valued n-tuple data structures of the form

Y = (1" TR ¥ L U(“’)

where the dimensions of v are dim(v) =(3,0:n), leading to v = v(:,0), v' = v(:,1),
and so on. N-tuple data structures greatly simplify the Leibnitz product rule based
derivative calculations that follow.

1.1. Nonlinear Differential Equations

Unperturbed Keplerian motion is governed by an inverse square gravity field. For
object motions near Earth the equation of motion is defined by'*7

= —ur/ (r.r)'(”2 (1)

where r = {,—r, Y, z] denotes the inertial relative coordinate vector that locates
an object relative to the Earth and y = 398601.2 km?/sec? is the gravitational con-
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stant. Of course asteroid motion applications will involve motions relative to the
Sun and other planets; nevertheless, the methodology presented here will general-
ize for computationally handling these more complicated application domains.
Two Lagrange-Like Invariants: Two scalar quantities are required for automating
the generation of arbitrary order time derivatives for the equation of motion. The
first Lagrange invariant-like variable! is defined by the dot product of the position
vector with itself, yielding

[=rr (2)

The n-th order time derivative of [ is computed by evaluating Leibniz’s product
rule

n
f(nj = Z (:3) pm) p(n-m) (3)

m=0

m n . . . e
where r("™) = ‘éT,? and denotes the standard binomial coefficient. This
m

calculation is very straightforward. When using this equation one must be aware
that this calculation requires that r,7,#,--- 7™ are all available before f)can
be computed, which suggests that a sequential process is required to processing
all required sensitivity terms. The second scalar variable consists of f raised to a
fractional power

g=(f)""" (4)

where p denotes the power. The variable p is kept general because perturbation
terms require several values for p for analyzing high-order harmonic gravity terms.
The classical approach for evaluating time derivatives for Eq. (4) leads to composite
function calculations that are handled by introducing the celebrated formula of Fad
di Bruno.

Faa di Bruno's Mathematical Identity:The problem of computing composite func-
tion derivatives has existed since the earliest days of the invention of calculus. Faa
di Bruno addressed this problem in a very general way, in 1857, where he presented

th

a mathematical identity for generalizing the chain rule of calculus to n'™" order
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derivative calculations. His formula for the n'* derivative of a function u = ¢(y),

where y = ¥ (z), is written as
dﬂ w-\' bl
(k)
Zbl,b) i @ (@) (T)

1-3 1-2-3 Y3+

where ¢ (y) and v () are assumed to have a sufficient number of derivatives, and

the summation extends over all the positive integer solutions of the constraint equa-
tions

by +bo+by+ -+ b, =k
by +2by +3bg + -4+ nb, =n

(6)

Each term appearing in Eq. (5) is defined by the integer solution to the constraint
equations of Eq. (6).

Simplified Model for the Composite Function Derivative: Our goal is to develop
a differential equation for g; thereby, avoiding the complexities encountered with
having to handle Fad di Bruno’s complicated combinatorial equation for high-order
composite function calculations. This is accomplished by squaring the equation for
¢ and clearing fractional powers by multiplying by f7, yielding:

gt =1 (7)

Differentiating w.r.t. time and clearing fractional powers yields the Ist order dif-
ferential equation for g:

fa+ gf'g =0 8)

that displays the required product form. Computing the n-th order time derivative
of this equation, by applying Leibniz’s product rule to each term, yields

Z ( )f(m} (n- m+l)+ P Z( )f(mi-l) n—m) _ () (9)
T

m=( m=0

which implicitly defines ¢'"*1) (i.e., the highest derivative appearing in the equa-
tion for g). Solving this equation for g*") yields the desired solution
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g(n+1) =
n n
P n (m+1) (n—m) " (m) ,(n—m+1) /f (10)
{5 +
{212)(m)f g mzr:l ™ f !
or
g{n+l} -

1
= E (1) 4(n) " E (m+1) _(n—m) (m) (n—m+1)
{2f g +Z(m) (S gle-mly fimlg )}/f

m=1

where a single summation calculation is required. This calculation requires that
9,04, . g™ are all available before ¢'"*')can be computed. All time deriva-
tives of f and g are defined by Egs (3) and (10). Introducing g into the two-body
equation of motion leads to

= —urg

which is in the required product form. Applying Leibniz product rule yields the nth
order time derivative calculation for the two body acceleration:

pl2+n) _ 3 Z (?‘L) T(fﬂ}g("—ml (110
m=() e

where the position and velocity vectors are assumed to be known. As shown in
Figure | recursive calculations are generated for third order and above. The cal-
culations are initialized by computing the known position and velocity vectors,
evaluating the acceleration vector, computing the first two derivatives for f and
g analytically, then all high-order derivatives are recursively evaluated using the
simple Leibniz product rule for Egs. (3), (10), and(11)

pm) gln) gl (12)

The calculations enabled by Egs.(3), (10) and (11) permit an arbitrary order analytic
continuation series solutions to be developed for propagating the state trajectories,
leading to the state trajectory propagation equation

rh? ThY rp?

< : (13)
r(t+h)=r(t)+rh+ st 3t + 0
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Figure 1: Analytic Continuation Computational Flow Diagram

and the velocity propagation equation
_ _ Fh2  pld)p3 |
v(t+ h) =r1(t) + rh+ 2: + m +... (14)

An open question is: how many terms? The resolution of the problem is compli-

cated because the solution accuracy is a function of three variables: (1) number
of terms retained, (2) the required accuracy, and (3) the integration step size h. A
further complicating factor involves the computer solution accuracy. For example,
one open equation is: what is the impact of double precision, quad precision, and/or
arbitrary order precision on the number of terms required and the step size for the
integration. It is of interest to observe in Table 1 for an orbit where r = rggq¢+ 700
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km = 7078 km, how rapidly the derivative terms die off.

The data in Table 1 supports the following conclusions: (1) the derivative values die
off rapidly, (2) large integration step sizes require high order expansions (i.e., >7),
and (3) algorithms that just sample the acceleration will have a hard time sampling
contributions from 9" and higher order terms, Future research will investigate the
impact of solution accuracy on the performance of the series approximation. Nu-
merical experiments are performed to establish a 3D trade space between maximum

step size and expansion order and solution accuracy.

2. STATE TRANSITION TENSOR MODELS FOR UNCERTAINTY
PROPAGATION

With accurate trajectory states available, the next engineering challenge is con-
cerned with generating propagation strategies for the uncertainty that exploits the
analyst knowledge of the potential spread in the initial conditions. This problem is
addressed by introducing nonlinear state transition tensor models for propagating
expected variations in the initial conditions. The governing equations for the first

three state transition tensor models orders are given by:

&= f(z,t)
by = V1, @ (to,to) =1 (15)
Dy = V2fd,; 0, + V Py, Py(lo.to) =0
b3 = V30,810, + V2 (20201 + P1®82) + VI Py, P (to, to) =0
These equations are used to propagate the departures in the conditions form the

nominal values for representing the evolution of uncertainty as
1 - - e eod
0r = §ydzq + %‘I’zdzgémo + 57‘1’352505-'1300% 2 4—,‘1’ 10zgdrodrodzg + ... (16)

where dz( denotes a sample perturbation selected from the assumed uncertainty
model. To study how the nonlinear system dynamics changes the assumed sta-
tistical model for the problem unknowns, Eq. (16) is reverted to provide drg =
dz¢ (6z). This transformation allows one to compute the mean motion, covariance
matrix, and higher order statistical measures, where the reverted series solution is
given by:

1 . -
0zp = A8z + %Azé;vd.r - %Agé:réxd.r - Z,A,MJ‘(SIOJ‘OI + .. (17)
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To understand how this equation is used, let us now consider the following change
of variables theorem:

Change of Variables: Let 6z = g(dx) be an invertible, continuously differen-
tiable mapping, with a differentiable inverse. If the probability density function
Pézg (dzg) is known, then the probability density function in the transformed space

is given by®
o
det ( M) '
ox

Equation (16) represents a direct transformation (analytic, continuously differen-

Péx (6z) = Péxq (5'170 - 9_1 (JI))

tiable, satisfying all conditions stipulated by the change of variables theorem above)
between initial conditions and the state at the current time. To this end, once the
initial condition distribution is specified, we arrive at an exact expression for the
probability density function (pdf) at the running time ¢. The proposed solution
effectively solves the stochastic Liouville equation for the pdf along the motion
trajectory. Several numerical examples are provided to validate the state trajectory

and uncertainty propagation results.

3. REVERSION OF SERIES SOLUTION FOR THE INITIAL
CONDITION UNCERTAINTY

The series expansion for the instantaneous variations in the state perturbation is
reverted by introducing Eq. (17) into Eq. (16) and collecting terms. This step leads
(o the following necessary conditions for inverting the series through 4-h order:

5L T =B A
g o1 1
) :U=§¢1A2+§‘I’2A1A|
o 1 | 1
§:0 =6‘1‘1A3 + 702 (AyAg + AgAy) + Eq’fiAlAlAl (18)

D 1
540 :%@1}14 + Tz (—5 (A1 Az + AzAy) + QA:JAQ)

' |
+ 22 (Aidr + Ada AL+ A A) + g A AL
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yielding the tensor coefficient solutions

A =97
Ay =— ‘I’]_I‘I)QAJAI

3
Ay =— ] (§¢2(A|A2+A2Al)+¢'3A|A,A1) (19)

|
Ay =-— ‘I)l—l{ﬁ‘pg (-i (A Az + A:jA‘_J e QAQAQ)
+ 203 (A1 A1 As + AL AgA| + AgA 1AL + @4A3A1A1A1}

In every case one only needs the first-order state transition matrix to be inverted
to recover the series expansion coefficients. It is understood that these operations
represent implied tensor contraction operations, since the resulting object sizes vary
during the calculations. The series tensor coefficients enable the calculation of the
reverted uncertainty propagation equation defined by Eq. (17), where the inverse
transformation for the mapping is given by

A 1 ) | . ] o
g_' {6z} = Aoz + -2—.425.1:6.1' + ;;—|A35;ré:rf);c 4 E.-i.-;d.réa‘éré;r + ... (20)

and the differentiable inverse follows as

dg~! (9z)

a 1 | 1 -
d(6x) Ar + Agdz + ﬁfl:;().r.é:r + 5*!'4440:85.1:(542 + e 1)

The results of applying Egs. (19) through (21) completely define the pdf, which
enables fully nonlinear predictions for the mean, covariance, and higher-order sta-
tistical moments. Analytically, the tensor coefficients can be interpreted as inverse
state transition tensors for mapping the final states to the initial time.

4. INITIAL AND TRANSFORMED PROBABILITY DISTRIBUTION
FUNCTION

We assume for the moment the initial multivariate normal distribution is defined by

N~N (,u. Z) (22)
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where ;1 € RY denotes the mean and ) denotes the covariance matrix. The initial

pdf is assumed to be given by

_1 el
p (3 (1)) = (2n) [det 3| 7 e 40l £ 00 (23)
The desired nonlinear pdf is then given by

]
det (—_“9 “‘“){

Péz (62) = Pozy (620 = g~ (67)) 5

where ¢! and %%«zl are defined by Egs. (20) and (21)". This solution effec-

tively solves the stochastic Liouville equation for the pdf of the solution along the

motion trajectory.

5. NUMERICAL RESULTS

The Flow Diagram for the Analytic Continuation is presented in Figure 1. One
provides the initial position and velocity vectors, time interval for the simulation,
the derivative expansion order, and the number of continuation steps. The recursion
works by updating position and velocity, computing f, f', f”, and g, ¢'. g" and
then looping recursively for generating the higher derivatives for f. ¢, and r. The
simulation continues until the final propagated final time is reached and the simu-
lation is stopped. The analytic continuation solution for the position and velocity
vectors is tested by computing a single orbit, where the initial conditions must be
recovered for an accurate solution. Several LEO examples are presented for an
initial 7000 km orbit where the following eccentricities 0.05, 0.2, and 0.9 are as-
sumed. The first three cases assume that the motion is in a 2D plane. A fourth LEO
example is presented where a 3D motion exists for 0.53 eccentricity orbit. The last
example is a circular GEO orbit. In all cases the integration step size has been held
fixed. Future research will investigate variable step size algorithms for propagat-
ing the position and velocity estimates, which is very important for the asteroid
application. For example, the 0.9 eccentricity orbit considered yields minor-level
precision in the position estimates after 5000 continuation steps. Nevertheless, very
large variations in the allowed continuation step size are theoretically possible, and
important when simultaneously propagating the state and transition tensors for un-

certainty analysis.
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5.1. Case 1: 700 km E = 0.05 elliptical Earth Orbit

The initial position and velocity vectors are

7.0 0.0
r(to) = | 0.0 | x 10°m;  #(to) = | 7732.411008 | X 10%m/ sec (24)
0.0 0.0

The orbit eccentricity is 0.05. Sub-meter accuracy is achieved for a step size of ~
629 sec. As the integration step size approaches 300 sec. the solution accuracy is
beyond double precision arithmetic (i.e., 14 digits) and only seven series terms are
required. Table 2 shows the effect of changing number of steps & number of Series

Teams on integration accuracy.

Table 2: Case 1 Elliptical Orbit (E=0.05) Integration Performance & Accuracy
Study: Continuation vs. F&G (1 orbit)

# of Continuation Steps & In- | # Series Terms for mm er-

tegration Step Size(sec)(Orbit | ror /Final Integration accu-

Period = 6294.6595 sec ) racy

200, 31.4733 401077 m, 107" m/s )

100, 62.9466 51077 m, 107" m/s )

80, 78.6832 6 (107 % m, 107" m/s)

60, 104.9109 6 (1078 m, 107 m/s )

40, 157.3665 6 (1075 m, 10~ m/s)

3, 209.8220 7 (10~7 m, 10~19 m/s)

20, 314.7329 8(10°6m, 107" m/s )
15, 419.6439 8 (10~ m, 10" m/s )

10, 629.4660 12(1072m, 107% m/s )

8, 786.8324 15 (10" m, 1073 m/s )

The above results are verified by comparing the continuation solution with the clas-
sical F&G solution at each time step. Figure 2 shows the comparison between F&G
Series vs continuation solution of each time step using 15 continuation steps with
a step size of 419.64 seconds for a complete orbital period. Figure 3 shows orbital
period with the association continuation steps.
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5.2. Case 2: 7000 km E = 0.2 Elliptical Earth Orbit

The initial position and velocity vectors are

7.0 0.0
r(to) =100 x10°n; 7 (to) = [ 8266.295076 | x 10%m/ sec (25)
0.0 0.0

The orbit eccentricity is 0.2. As shown in Table 3, sub-meter accuracy is achieved
for a step size of ~ 407 sec. As the integration step size approaches 20 sec. the
solution accuracy is beyond double precision arithmetic (i.e., 14 digits) and only
seven series terms are required.

5 Paosition Error vs. Classical F&G solution

107 -
f’ 10°
4
DX
o® DY
0 1000 2000 3000 4000 5000 6000 7000
T (sec)
'? Velocity Errorvs. Classical F&G solution
10 . =
= 10°
E
:1 10°
DVx
10‘10 — DV)’ s
0 1000 2000 3000 4000 5000 6000 7000
T (sec)
Figure 2: Continuation vs. F&G (1 orbit)
5.3. Case 3: 7000 km E = 0.9 elliptical Earth Orbit
The initial position and velocity vectors are
7.0 0.0
rto)= [ 0.0 | x 10%m; 7 (to) = | 10401.526536 | = 10°m/sec  (26)

0.0 0.0
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Table 3: Case 2 Elliptical Orbit (E=0.2) Integration Performance & Accuracy
Study: Continuation for | orbital period

# of Continuation Steps & In- | # Series Terms for mm er-
tegration Step Size(sec) (Or- | ror /Final Integration accu-
bit Period = 8145.5912 sec ) | racy

200, 40.7280 4(107%m, 1070 m/s)
100, 81,4559 S5(107"m, 1079 m/s)
80, 101.8199 6(10°%m, 10~ m/s)
60, 135.7599 6(107"m, 1079 m/s)
40, 203.6398 8 (107" m, 10719 my/s)
3,271.5197 8 ( 10~%m, 10~ m/s)

20, 407.2796 11 (107 %m, 1075 m/s)

15, 543.0394 15(10'm, 1073 m/s )

The orbit eccentricity is 0.9. Table 4 shows sub-meter accuracy achieved for a step
size of ~ 184 sec. Only five derivative orders are required. Of course, this example
needs to have step size control imposed because the only interesting motion is near
perigee. Very large performance gains are possible and future research will inves-
tigate strategies for studying these problems. The high accuracy achieved for this
application provides great confidence that asteroid motion prediction can be car-
ried out to very high precision, and that the associated sensitivity partial derivative
calculations for supporting the propagation of modeling uncertainty are computed
with high accuracy.

5.4. Case 4: 700 km Altitude elliptical Earth Orbit

The initial position and velocity vectors are

1.8917122 0.0
r(to) = | 3.7834254 | x 10%m; i (to) = | 7.5042925 | % 10%m/sec (27)
5.6751367 0.0

The orbit eccentricity is 0.534522. Full 3D motions are excited. As is shown

in Table 5, sub-meter accuracy is achieved for a step size of ~ 150 sec. As the
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Figure 3: Continuation for 1 orbital period

Table 4: Case 3 Elliptical Orbit (E=0.9) Integration Performance & Accuracy
Study: Continuation vs. F&G solution (2 weeks, 14 orbits)

# of Continuation Steps & In- | # Series Terms for mm er-
tegration Step Size(sec) (Or- | ror /Final Integration accu-
bit Period = 184313 sec ) racy

5000, 36.8627 5(107°° m, 10 % m/s )
3000, 61.4378 501077 m, 107" m/s )
1000, 184.3135 7(107%m, 10 " m/s)
800, 230.3919 10(10' m, 1079 m/s )

integration step size approaches 100 sec. the solution accuracy is beyond double

precision arithmetic (i.e., 14 digits) and only seven series terms are required.
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Figure 4: Continuation vs. F&G solution (2 weeks, 14 orbits)

Table 5: Case 4 Elliptical Orbit Integration Performance & Accuracy Study

# of Continuation Steps & In- | # Series Terms for mm er-
tegration Step Size(sec)(Orbit | ror /Final Integration accu-
Period = 5926.376 sec ) racy

200, 29.6319 6 (107" m, 107" m/s )
100, 59,2638 7(107%m, 1079 m/s)

80, 74.0797 8(107°m, 107% m/s )

60, 98.7729 9 (1072 m, 1077 m/s)

40, 148.1594 10 (1071 m, 107 m/s)
35, 169.3250 [1(10m, 1072 m/s)

30, 197.5459 120107 ' m, 10 " m/s )
25, 237.0550 Failed to Converge
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5.5. Case 5: 42241 km altitude Circular Earth Orbit (GEO)

The initial position and velocity vectors are

42241121 0.0
rito)=| 00 | x10°m;  #(to) = | 3.0718612 | x 10°m/sec
0.0 0.0

The results of Table 6 indicate that Circular Orbits are easy to integrate compared
to elliptical orbits. In deed the step sizes for the circular case are 3-5 X larger than
can be handled for elliptical cases. Generally 8-10 analytic continuation steps are
required to achieve mm position error levels. Future research will investigate the
impact of modeling these cases using an extended precision version of the software.

Table 6: Case 5 GEO Circular Orbit Integration Performance & Accuracy Study

# of Continuation Steps &In- | # Series Terms for mm er-
tegration Step Size(sec)(Orbit | ror /Final Integration accu-
Period = 86400 sec ) racy

60, 1439.999 6(10°%°m, 1071 nys )
40, 2159.999 6 (107%m, 107" mss)

35, 2468.571 70107 "m, 1071 m/s)

30, 2879.999 (107 %m, 107" mss)

25, 3455.999 8(10""m, 101 mss)

20, 4319.999 9(10~m, 10" mfs) |
15, 5759.999 10 (10~"m, 107" m/s )

10, 8639.999 10 (10 %m, 109 m/s )

5, 17279.999 14(107'm, 102 m/s )

For this specific case the algorithm accuracy is tested versus the F&G classical
solution for an extended time period. Instead of integrating for | orbital period the
trajectory is generated for approximately 2 weeks, about 14 orbits. Figure 4 shows
the errors in position & velocity at each time step vs. the F&G solution.

It is quite clear the consistency of the solution with the known closed form solution
at each time step, where the accuracy is advanced at each time step over the whole



High Accuracy Trajectory and Uncertainty Propagation Algorithm 33

period of the trajectory generation. This consistency combined with the speed of
convergence of the algorithm can have a significant impact on orbit determination
and propagation techniques.

6. CONCLUSIONS AND FUTURE DIRECTIONS

A new algorithm is presented that computes arbitrary time derivatives of the two-
body problem using a recursive formulation. The key paper contribution is the
identification of Lagrange-like invariants that re-cast the two-body calculations in
a product form that is handled by Leibniz product rule. Leibniz product rule is
applied sequentially to both Lagrange-like invariants and the two-body equation
of motion. Simulations have been successfully performed that included up to 40
exact time derivatives for the two-body motion. Several numerical trajectory calcu-
lations are presented that demonstrate that simple analytical continuation calcula-
tions produce high precision calculations for the both position and velocity vectors.
Extensions are presented for evaluating the uncertainty of the initial conditions by
developing a nonlinear state transition matrix series expansion. These equations are
used to transform samples from the initial uncertainty covariance matrix to develop
a transformation for modifying the underlying pdf. A reversion of series solution is
presented for the state transition matrix series that effectively solves the stochastic
Liouville equation for the pdf in presence of low diffusion effects. Numerical re-
sults are presented for studying the evolution of the pdf during a trajectory motion.
Future research will extend the results in two ways: (1) extended precession cal-
culations will be introduced for investigating the maximum integration step sizes
that can be supported by the proposed analytic continuation modeling algorithm
and (2) the state transition tensors will be developed as power series expansions for
computational efficiency.
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