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Introduction
Empirical mode decomposition (EMD) is a signal processing 

technique proposed for the analysis of non-stationary and 
nonlinear signals [1]. EMD has been successfully applied to solve 
numerous practical problems in various applications [2-9]. This 
technique decomposes a time series into a set of zero-mean 
underlying components called intrinsic mode functions (IMF). 
The main advantage of EMD is that it is an adaptive method. For 
example, the EMD algorithm depends only on the signal under 
analysis and does not require any a priori defined basis system. 
One of the main drawbacks of EMD is mode mixing that occurs 
when either signal of a similar scale resides in more than one IMF 
or an IMF consists of signals of broadly different scales [10]. This 
issue may cause some IMFs to become physically meaningless. 
Ensemble EMD (EEMD) was developed to overcome the EMD 
mode mixing issue [10]. The improved algorithm, EEMD, is based 
on one of the most important properties of EMD, namely that EMD 
behaves as a dyadic filter bank when applied to white Gaussian 
noise [11,12]. The principle of EEMD is to add a finite number 
of white noise series to the signal of interest. These background 
white noise series provide a time-frequency reference frame for 
the original signal. The filter bank properties of EMD help the 
signal components to be projected on the proper scales of this 
reference frame. Since the white noise series are different in 

each trial, the noise cancels out for a sufficiently large number 
of ensembles, leaving only the persistent part of the signals. As a 
result, the components of similar scales are expected to reside in 
the same IMFs which reduce the mode mixing problem [10].

Vibrocardiographic (VCG) signals are the cardiac vibration 
measured at the chest surface [13]. These signals can contain 
useful information for diagnosing and monitoring of cardiac 
conditions [14]. However, VCG vibrations have relatively low 
amplitudes that can be easily contaminated by environmental 
vibration, patient movements and respiration noise, which can 
lead to a misinterpretation of the VCG signal features. VCG as well 
as other biomedical signals such as heart sounds have nonlinear 
and non-stationary characteristics [15-24]. Hence linear methods 
may not be effective in analyzing these signals. EMD and EEMD 
were successfully used for noise cancellation and analysis of 
some biomedical signals [25-30]. For example, Velasco MB et al. 
[31] utilized EMD to filter the high-frequency noise and baseline 
wander of ECG. Nimunkar AJ et al. [32] suggested an algorithm 
to remove power-line noise on ECG by adding a pseudo-high-
frequency noise to IMFs. Krupa BN et al. [33] proposed an 
algorithm for denoising the cardiotocography signals using partial 
sum of IMFs. Lemay M et al. [34] compared the performance of an 
EMD-based algorithm with an IIR band pass filter to improve the 
quality of atrial signals after QRST cancellation. Chang K et al. [35] 
investigated the effectiveness of EMD-based, EEMD-based and 
FIR Wiener filters for removing the Gaussian noise from ECG and 
concluded that EEMD outperformed the other two methods. The 
current study investigates the utility of different filters for VCG 
noise cancellation. The performance of EEMD and Wiener filters 
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Abstract

Vibrocardiographic (VCG) signals are the cardiac vibration measured at the chest 
surface. These signals can contain useful information for diagnosing cardiac 
conditions but are often contaminated by noise. Although band-pass and adaptive 
filters were used for noise removal from similar signals, the utility of ensemble 
empirical mode decomposition (EEMD) for filtering VCG was not previously 
investigated. In this study, an EEMD-based filter was proposed and tested. The 
filtering scheme first decomposed the VCG waveform into a set of intrinsic mode 
functions (IMF) then utilized the partial sum of IMFs to remove white noise that 
was added to simulated VCG signals. To measure the filter effectiveness, the 
normalized root-mean-square error (NRMSE) between the clean (i.e., before 
adding noise) and filtered signals was calculated for signal-to-noise ratios ranging 
from 1 to 20 dB. The EEMD-based filter performance was also compared with 
traditional methods such as Wiener filter. This comparison suggested that EEMD-
based filter outperformed the Wiener filter in noise removal from simulated VCG. 
These results also suggested that EEMD may be utilized for white noise removal 
from actual VCG signals. Further investigations are warranted to study the relation 
between IMFs and different types of noise, which can enhance the effectiveness of 
EEMD-based filters in removing these noise types from actual VCG signals.

Keywords: Noise cancellation; Wiener filter; priori; Denoising; Cardiotocography; 
Misadjustment
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was compared at different signal to noise ratios for a synthetic 
VCG signal. In order to assess the performance of different filtering 
methods, the root-mean-squared misadjustment between the 
clean and filter VCG amplitudes was calculated. The EEMD-
based filter had a lower misadjustment than the Wiener filter. 
Therefore, this study suggests that the proposed EEMD-based 
filter may be more effective than Wiener filter in removing white 
Gaussian noise from actual VCG signals. The organization of this 
paper is prepared as follows. The Materials and Methods section 
provides the theoretical background behind EMD and EEMD as 
well as a brief description of EEMD-based filter and performance 
evaluation methods. Results are then presented and discussed in 
the Results and Discussion sections. Finally, a Conclusion section 
is presented.

Materials and Methods

VCG Signal and Synthetic Noise Set

A simulated VCG consisting of a pure tone at 40 Hz and a 
varying frequency component ranging from 7 to 20 Hz has been 
used in the present study. To evaluate the capability of EEMD-
based filter in noise cancellation, the synthetic VCG signal was 
polluted by white Gaussian noise sets, nwgn, with the signal-to-
noise ratio (SNR) ranging from 1 to 20 dB.

Ensemble Empirical Mode Decomposition

The Hilbert Huang transform is developed for analysis of 
nonlinear and non-stationary signals. This technique consists 
of two core steps; empirical mode decomposition and Hilbert 
transform. The EMD decomposes the signal into IMFs with 
varying amplitude and frequency. These IMFs are assumed to be 
correlated to physical or physiological aspects of the signals under 
analysis [26,36]. More specifically, the EMD algorithm consists of 
the following steps [1]:

i. Identify all the local extrema of the signal, x(t).

ii. Determine the upper and lower envelopes of the signal with 
cubic spline using the local maxima and minima, respectively.

iii. Calculate the local mean of the two envelopes, m(t).

iv. Calculate the difference between the signal and the local 
mean, d(t) = x(t)-m(t).

v. Replace x(t) with d(t)

vi. Repeat steps 1 through 5 until d(t) becomes a zero-mean 
function. Then, d(t) is called the first IMF, c1(t).

vii. Subtract the IMF from the signal r1(t) = x(t)-c1(t)

viii. Repeat steps 1 through 7 to obtain the nth IMF after n 
iterations, cn(t).

ix. The process stops when rn(t) becomes a monotonic function 
from which no more IMF can be extracted.

The EEMD that is proposed to solve the mode-mixing issue of 
the EMD uses the following algorithm [10]:

a) Add a white noise series, ni(t), to the original signal, x(t), to 
obtain xi(t) = x(t) + ni(t).

b) Decompose xi(t) using EMD algorithm

c) Repeat steps 1 and 2 with NE (number of ensembles) 
different sets of white noise series to obtain NE sets of IMFs

d) Calculate the mean of the ensemble of IMFs to obtain the 
final signal intrinsic mode functions.

e) At the end of the process, the original signal can be 
reconstructed as:

( ) ( ) ( )
n

x t c t r tii 1
= +∑

=  (1)

Where ci(t) and r(t) are the ith IMF and residue, respectively. 
The low and high scale IMFs contain the high-frequency and low-
frequency components of the signal, respectively. Thus, EEMD-
based low-pass and high-pass filters can be designed using the 
partial reconstruction of IMFs of interest. Since the white noise 
series usually has higher frequencies than VCG signals, they are 
expected to reside in the low scale IMFs. In the current study an 
EEMD-based low-pass filter was used to remove the undesired 
noise sets as follows:

( ) ( )
n

EEMDF c t r tm ii m
= +∑

=  (2)

Where  1 m n≤ <

Misadjustment Analysis

The normalized root-mean-square error (NRMSE) between 
the filter and clean VCGs’ amplitude was calculated as:

( )2L VCG VCGclean,i filt,  ii 1RMSE
L

−∑ ==  (3)

RMSE
NRMSE

VCGmax
=  (4)

where VCGclean,i  and VCGfilt,  i  are the clean and filtered VCG 
signal amplitude at time i, respectively.  VCGmax and L are the 
maximum amplitude of the clean VCG and the VCG signal length. 
The performance of the EEMD-based filter was also compared 
with a Wiener filter [37] with a priori SNR estimation using 
Decision-Directed method [38].

Results
The first step of EEMD algorithm consists of adding a finite 

number of white Gaussian noise series to the signal of interest. The 
number of added noise (number of ensembles) plays an important 
role in the EEMD performance. Figure 1 shows the NRMSE of the 
signal under analysis polluted with different levels of noise versus 
number of ensembles. The NRMSE decreased dramatically as 
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number of ensembles increased from 1 to 100. For larger number 
of ensembles, the NRMSE decreased with a slower rate and finally 
reached a plateau. Large number of ensembles resulted in lower 
NRMSE, but also required more computational time. Therefore, 
a compromise between the NRMSE and computational efficiency 
is needed. In the current study, number of ensembles of 150 was 
sufficient for the simulated VCG to achieve an acceptable NRMSE 
value.

The EEMD-derived IMFs of the simulated VCG with Gaussian 
noise and their power spectrum are shown in Figure 2. As 
expected, the EEMD behaved as a filter bank and decomposed 
the signal into IMF components each of which resided in a 

specific frequency range. Thus, the noise may be filtered by 
ignoring the lower IMF scales. Figure 2 shows that the signal is 
decomposed into 11 oscillatory components and a residue. The 
lower frequency component of the VCG events (i.e. the varying 
frequency component ranging from 20 to 7 Hz) was distributed 
in IMF #2 through #5, while the higher frequency component 
(i.e. the 40 Hz component) mainly allocated in IMF #2. The high 
frequency Gaussian noise was concentrated in the first IMF. 
Therefore, the signal contaminations can be reduced with partial 
reconstruction of IMF components by ignoring the low scale IMFs. 
This concept will be investigated further in the following section 
using the NRMSE parameter.

Figure 1: The effect of trial number (number of white noise series) on EEMD performance for reconstructed simulated VCG without added noise 
and with 10, 5 and 2 dB added noise.

 

Number of Ensembles 

Figure 2: Simulated VCG contaminated by Gaussian noise with SNR=10dB EEMD-derived IMF components (left). The signal was decomposed into 
11 IMFs (sub Figure a through k) and a residue (sub Figure l). The power spectral density of the IMFs and residue (right).Most of the high-frequency 
Gaussian noise is concentrated and localized in the first IMF. However, some low amplitude noise can be seen above 45 Hz in the second IMF. Also, 
some parts of the VCG events (especially VCG2) are seen in the first IMF between 20-40 Hz which is not desirable.
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Discussion
EEMD is a signal-dependent technique that is convenient 

for nonlinear and non-stationary signals. In this section, the 
performance and efficiency of the EEMD-based noise filtration 
method was investigated and compared with traditional filters.

 Filtering Performance of EEMD

Figure 3 shows the filtered VCG signals using partial summation 
of IMF components. The NRMSE between the filtered and clean 
VCG amplitude are shown in Figure 4. Both EEMD-based filter and 
the Wiener filter had improved noise cancellation performance as 
SNR increased. The Wiener filter and EEMDF2 had the minimum 
NRMSE at 1≤ SNR≤ 2 dB and 4≤ SNR≤ 16 dB, respectively. The 
ratio EEMDF2/Wiener fell by 48.85% from 1.095 to 0.560 as SNR 
increased from 1 to 20 dB, which indicates that EEMD-based filter 
was able to reduce the white Gaussian noise more efficiently 
than Wiener filter at higher signal-to-noise ratios. Overall, for the 
signal considered, the EEMD filter outperformed the Wiener filter 
for SNR values >4 dB and had similar performance for 1< SNR< 4 
(Table 1).

EMD and EEMD were designed to analyze nonlinear and 
non-stationary signals. The main advantage of EMD is that it 
is an adaptive method that depends only on the signal under 
analysis and does not require any a priori defined basis system. 
Instead, it decomposes the signal into IMFs that depend on the 
original signal alone. On the other hand, determining the physical 
phenomena associated with IMFs is not always possible and 
needs comprehensive understanding of the signal [39]. A main 
drawback of EMD is the “mode mixing”, which is either a similar 
scale residing in more than one IMF or an IMF consisting of 
signals of broadly different scales [10]. This issue may cause some 
IMFs to become physically meaningless. EEMD was developed 
to overcome the EMD mode mixing issue. However, EEMD 
has relatively higher computational cost than both EMD and 
traditional band-pass filters. In the current study, EEMD was more 
effective than Wiener filter in white noise removal from VCG. The 
filter performance certainly depended on the number of IMFs left 
out. Performance was best in the current application when only 
the lowest IMF with the lowest scale is ignored.

Table 1: NRMSE analysis for simulated VCG contaminated with white noise with SNR values ranging from 1 to 20 dB.

NRMSE for Simulated VCG with white noise (%)

Signal-to-Noise Ratio [dB] EEMDF1 EEMDF2 EEMDF3 EEMDF4 Wiener

1 22.95 13.57 16.25 21.07 12.39

2 20.5 12.46 16.01 21.15 11.06

4 16.3 10.13 15.6 20.99 10.23

6 12.99 8.23 15.11 20.87 9.02

8 10.39 6.82 15.04 20.83 8.56

10 8.39 5.98 15.02 20.85 8.18

12 6.75 5.26 14.82 20.8 7.84

14 5.55 4.85 14.93 20.79 7.52

16 4.56 4.46 14.79 20.8 7.33

18 3.86 4.2 14.76 20.78 7.36

20 3.32 4.07 14.8 20.87 7.26

Conclusion
Noise removal from biological signals like VCG can help 

provide higher quality information that would facilitate signal 
interpretation, which may help provide more accurate medical 
diagnosis. In the current study, the performance of EEMD-based 
filter for white noise removal from VCG signal was evaluated. To 
test the filter, a synthetic VCG signal was created and corrupted 
by white noise. The filter was then used to recover the original 
VCG signal. This was followed by calculating the normalized 
root-mean-squared misadjustment between the original and 
filtered signals. The performance of the EEMD and a Wiener filter 

was evaluated by comparing the associated misadjustments. 
Results of this analysis demonstrated that the EEMD filter had 
a lower normalized root-mean-squared misadjustment than the 
Wiener filter. The lower performance of the Wiener filter may 
be attributed to a relatively high non-linearity of the VCG signal 
under consideration. More studies may be warranted to document 
the effectiveness of EEMD filters for noise cancellation from 
actual VCG signals in health and disease. Future studies may also 
investigate the connection between the IMF and cardiac events, 
which in turn, may enhance our understanding of VCG signals and 
their relation to cardiac events.

http://dx.doi.org/10.15406/jabb.2017.02.00024
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Figure 3: Noise reduction from the simulated VCG contaminated with white Gaussian noise using EEMD-based partial reconstruction.

(a) EEMDF1 (b) EEMDF2 (c) EEMDF3 (d) EEMDF4

Figure 4: NRMSE analysis for simulated VCG contaminated with white noise with SNR values ranging from 1 to 20 dB.

Figure 3 Figure 4
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