
  

In this study, a machine learning algorithm was developed to classify seismocardiographic (SCG) signals occurring 
during low and high lung volumes. The results demonstrated that morphological differences can be observed in SCG 
waveforms during respiration. SCG events were classified using a Radial Basis Function (RBF) support vector 
machine (SVM) algorithm into the two classes of low and high lung volume. Classification accuracy was found to be 
about 75%. 
Measurements of vibrations from the chest surface due to the heart activity are called seismocardiographic (SCG) 
signals [1]–[4]. SCG signal morphology can be affected by respiration since it triggers known changes in 
physiological parameters (such as intrathoracic pressure, stroke volume, etc.) [5], [6]. SCG events occurring during 
low and high lung volume (LLV and HLV, respectively) may have different characteristics [7], [8]. Accurate 
classification of SCG events into LLV and HLV groups might lead to a more accurate estimation of SCG signal 
feature points, enhance our understanding of SCG genesis, and help explain SCG changes with cardiac pathology. 
For the first time, in this study, SCG events during LLV and HLV were classified using a machine learning algorithm. 
Eight healthy individuals enrolled in the study after informed consent. Respiratory flow rate and SCG were measured 
simultaneously. A triaxial accelerometer (356A32, PCB Piezotronics, Depew, NY) was used to capture the SCG 
signals. The sensor was placed at the left lower sternal border and the level of the 4th intercostal space using a 
double-sided tape. The lung volume signal was calculated as the integral of respiratory flow rate. The SCG events 
were then grouped into either LLV or HLV using the lung volume signal. A support vector machine (SVM) with a 
RBF Kernel was trained on the SCG events classified as occurring during LLV or HLV. 710 samples (i.e., SCG 
events) were used to train, and 178 were used as testing (i.e., 80/20 train and test split). There was an equal number of 
LLV and HLV events. Three SVM models were trained; SCG1, SCG2 (occurring around the first and second heart 
sounds, respectively), and SCG (the total cardiac cycle). 14 spectral features (sample entropy, spectral entropy, 
median, skewness, Kolmogorov complexity, etc.) were extracted. These features were selected by reviewing relevant 
literature [9]. The extracted features were used as the inputs for the SVM and the occurrence of LLV or HLV were the 
outputs. Matlab (R2015b, The MathWorks, Inc, Natick, MA) was used to preprocess the signals. The machine 
learning analysis was implemented with Python Scikit-Learn.                                    
The RBF SVM was used to classify the SCG events into LLV and HLV classes. For SCG, SCG1, and SCG2 the 
accuracies were 75%, 77%, and 75%, respectively. The identification accuracy for all three SVM models were also 
obtained using K-fold cross-validation method (k = 20). For SCG, SCG1, and SCG2 models and the accuracies were 
73%, 74%, and 75%, respectively. These results suggest that SVM might be used to classify SCG events into LLV 
and HLV classes. The main limitation of this study was the relatively low number of samples which may have 
reduced accuracies.  
The results of this study showed that the SCG demonstrated morphological differences during respiration. SCG 
events were classified using a RBF SVM algorithm into the two classes of LLV and HLV. Classification accuracy 
was found to be about 75%. Studying the effect of respiration allows separating SCG into groups with similar 
events. This reduces SCG waveform variability and enables more precise estimation of SCG characteristics. Future 
studies may focus on using different machine learning approaches including unsupervised learning techniques to 
cluster similar SCG events. 
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