Classification of Seismocardiographic Cycles into Lung Volume Phases
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In this study, a machine learning algorithm was developed to classify seismocardiographic (SCG) signals occurring
during low and high lung volumes. The results demonstrated that morphological differences can be observed in SCG
waveforms during respiration. SCG events were classified using a Radial Basis Function (RBF) support vector
machine (SVM) algorithm into the two classes of low and high lung volume. Classification accuracy was found to be
about 75%.

Measurements of vibrations from the chest surface due to the heart activity are called seismocardiographic (SCG)
signals [1]-[4]. SCG signal morphology can be affected by respiration since it triggers known changes in
physiological parameters (such as intrathoracic pressure, stroke volume, etc.) [5], [6]. SCG events occurring during
low and high lung volume (LLV and HLV, respectively) may have different characteristics [7], [8]. Accurate
classification of SCG events into LLV and HLV groups might lead to a more accurate estimation of SCG signal
feature points, enhance our understanding of SCG genesis, and help explain SCG changes with cardiac pathology.
For the first time, in this study, SCG events during LLV and HLV were classified using a machine learning algorithm.

Eight healthy individuals enrolled in the study after informed consent. Respiratory flow rate and SCG were measured
simultaneously. A triaxial accelerometer (356A32, PCB Piezotronics, Depew, NY) was used to capture the SCG
signals. The sensor was placed at the left lower sternal border and the level of the 4™ intercostal space using a
double-sided tape. The lung volume signal was calculated as the integral of respiratory flow rate. The SCG events
were then grouped into either LLV or HLV using the lung volume signal. A support vector machine (SVM) with a
RBF Kernel was trained on the SCG events classified as occurring during LLV or HLV. 710 samples (i.e., SCG
events) were used to train, and 178 were used as testing (i.e., 80/20 train and test split). There was an equal number of
LLV and HLV events. Three SVM models were trained; SCG1, SCG2 (occurring around the first and second heart
sounds, respectively), and SCG (the total cardiac cycle). 14 spectral features (sample entropy, spectral entropy,
median, skewness, Kolmogorov complexity, etc.) were extracted. These features were selected by reviewing relevant
literature [9]. The extracted features were used as the inputs for the SVM and the occurrence of LLV or HLV were the
outputs. Matlab (R2015b, The MathWorks, Inc, Natick, MA) was used to preprocess the signals. The machine
learning analysis was implemented with Python Scikit-Learn.

The RBF SVM was used to classify the SCG events into LLV and HLV classes. For SCG, SCG1, and SCG2 the
accuracies were 75%, 77%, and 75%, respectively. The identification accuracy for all three SVM models were also
obtained using K-fold cross-validation method (k = 20). For SCG, SCG1, and SCG2 models and the accuracies were
73%, 74%, and 75%, respectively. These results suggest that SVM might be used to classify SCG events into LLV
and HLV classes. The main limitation of this study was the relatively low number of samples which may have
reduced accuracies.

The results of this study showed that the SCG demonstrated morphological differences during respiration. SCG
events were classified using a RBF SVM algorithm into the two classes of LLV and HLV. Classification accuracy
was found to be about 75%. Studying the effect of respiration allows separating SCG into groups with similar
events. This reduces SCG waveform variability and enables more precise estimation of SCG characteristics. Future
studies may focus on using different machine learning approaches including unsupervised learning techniques to
cluster similar SCG events.
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