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Swing-Up Control of the Pendubot:
An Impulse–Momentum Approach

Thamer Albahkali, Ranjan Mukherjee, and Tuhin Das

Abstract—The standard control problem of the pendubot refers to the
task of stabilizing its equilibrium configuration with the highest potential
energy. Linearization of the dynamics of the pendubot about this equi-
librium results in a completely controllable system and allows a linear
controller to be designed for local asymptotic stability. For the underactu-
ated pendubot, the important task is, therefore, to design a controller that
will swing up both links and bring the configuration variables of the system
within the region of attraction of the desired equilibrium. This paper pro-
vides a new method for swing-up control based on a series of rest-to-rest
maneuvers of the first link about its vertically upright configuration. The
rest-to-rest maneuvers are designed such that each maneuver results in a
net gain in energy of the second link. This results in swing-up of the second
link and the pendubot configuration reaching the region of attraction of the
desired equilibrium. A four-step algorithm is provided for swing-up control
followed by stabilization. Simulation results are presented to demonstrate
the efficacy of the approach.

Index Terms—Impulse, momentum, pendubot, underactuated.

NOMENCLATURE

For the following nomenclature, i ∈ {1, 2}, and j ∈ {1, 6}.
Ci cos θi .
C12 cos(θ1 + θ2 ).
di Distance between the ith joint and center of mass of the ith link

(in meters).
E2 Total energy of the second link (in Joules).
E2T Potential energy of the second link when (θ1 , θ2 ) = (π/2, 0)

(in Joules).
F Force acting on the second link at the second joint along the

direction of motion of the second joint, which does positive
work on the second link (in Newtons).

Fim p Impulsive force acting on the second link at the second joint
(in Newtons).

Fx Force acting on the second link at the second joint along the
x-direction (in Newtons).

Fy Force acting on the second link at the second joint along the
y-direction (in Newtons).

g Acceleration due to gravity (9.81 m/s2 ).
Ii Mass moment of inertia of the ith link about its center of mass

(in kilograms · square meter)
li Length of the ith link (in meters).
mi Mass of the ith link (in kilograms).
Mimp Impulsive moment acting on the second link at its center of

mass (in Newtons · meter).
qj Constants whose values depend on kinematic and dynamics

parameters of the pendubot.
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Fig. 1. Pendubot in an arbitrary configuration. The joint angles θ1 and θ2 are
measured counterclockwise with respect to the horizontal axis.

RA Region of attraction of the desired equilibrium
(θ1 , θ̇1 , θ2 , θ̇2 ) = (π/2, 0, 0, 0).

Si sin θi .
S12 sin(θ1 + θ2 ).
v2 Velocity of the center of mass of the second link

(in meters per second).
v−

2 Velocity of the center of mass of the second link, immediately
before the first link is stopped (in meters per second).

v+
2 Velocity of the center of mass of the second link, immediately

after the first link is stopped (in meters per second).
xy Cartesian reference frame fixed to the second link.
XY Inertial reference frame with unit vectors�i and �j along the X-

and Y -axis, respectively.
θi Angular displacement of the ith link, as defined in Fig. 1

(in radians).
θ̇i Angular velocity of the ith link (in radians per second).
θ̇−

i Angular velocity of the ith link, immediately before the first
link is stopped (in radians per second).

θ̇+
2 Angular velocity of the second link, immediately after the first

link is stopped (in radians per second).
τ External torque applied on the first link (in Newtons ·meter).
τb External torque required for braking, i.e., causing exponential

decay in the velocity of the first link (in Newtons ·meter).
τc Control torque applied during rest-to-rest maneuver prior to

braking (in Newtons ·meter).
τh External torque required to hold the first joint fixed, i.e., set

θ̇1 = 0 (in Newtons ·meter).

I. INTRODUCTION

The pendubot [4], [21] is a two-link robot in the vertical plane with
an actuator at the shoulder joint and a passive elbow joint. It is a classi-
cal example of an underactuated system [3], [16], [22], and its control
problem has similarities with that of the acrobot and the single and dou-
ble inverted pendulums on a cart. The complete control of the pendubot
requires swing-up to the neighborhood of its equilibrium configuration
with the highest potential energy followed by stabilization.

The stabilization problem, also known as the balancing problem,
has been addressed by several researchers. For example, Spong and
Block [21] linearized the dynamic equations and used a linear quadratic
regulator, Erdem and Alleyne [6] demonstrated a large region of attrac-
tion using nonlinear control based on state-dependent Riccati equation,
and Zhang and Tarn [29] used hybrid control. We linearize the dynamic
equations and use a linear controller for stabilization, but the contri-
bution of this paper lies in the development of a new methodology for
swing-up of the pendubot.

Several methods have been proposed in the literature for swing-up of
the pendubot. Spong and Block [21] proposed a method based on feed-
back linearization, and Fantoni et al. [7] utilized passivity properties of
the pendubot to develop an energy-based controller. The controller of
Fantoni et al. [7] requires tuning of parameters for an acceptable rate of
convergence and imposes restrictions on the initial conditions to avoid a
singularity. Kolesnichenko and Shiriaev [12] proposed global feedback
transformations for passivity-based control, and Lai et al. [13] used a
Lyapunov function with a time-varying parameter to avoid the singular-
ity problem. A different approach to the problem, based on limit cycle
oscillations in zero dynamics of the pendubot, was adopted by Grog-
nard and Canudas-de-Wit [11] and Orlov et al. [17]. In contrast to the
energy-based method [7], where the pendubot moves in a homoclinic
orbit, these methods achieve orbital stabilization. Orlov et al. [17] and
Qian et al. [25] used sliding-mode control to deal with uncertainties and
external disturbances. A sliding-mode controller typically provides ul-
timate boundedness, and this motivated the zeno-mode control design
by Orlov et al. [18]. Zeno-mode controllers require infinite switchings,
and hardware implementation [19] results in chattering. The theoretical
and experimental results of Freidovich et al. [9] are similar to the work
of Grognard and Canudas-de-Wit [11] and impose virtual holonomic
constraints to generate periodic motions of the passive link. Other ap-
proaches to swing-up of the pendubot include fuzzy control [14], for
example.

All swing-up methods essentially aim to increase the energy of the
pendubot. Our method is no exception, but we focus on the force of
interaction between the two links and the work done by this force on
the second link. For swing-up of the pendubot, we instinctively take the
first link to the vertically upright position and conduct a series of rest-
to-rest maneuvers about this configuration that results in swing-up of
the second link. Similar to the work of Fantoni et al. [7], our approach
is based on the energy of the system, but it does not impose restrictions
on the initial conditions or suffer from any singularity. Furthermore,
the rest-to-rest maneuvers allow swing-up in the presence of joint limit
restrictions on the first link. A salient feature of our approach is the
use of impulsive torques for the rest-to-rest maneuvers. The idea of
using impulsive forces as control inputs is not new, and some of the
early work can be credited to Pavlidis [20], Gilbert and Harasty [10],
and Menaldi [15]. In recent years, researchers have investigated the
problems of stability, controllability, observability, optimality, etc. (see
[5], [23], [28], and the references therein), but interestingly, there has
been some work on impulse control of underactuated systems. For
example, Weibel et al. [27] investigated impulse control of a pendulum
on a cart, and Aoustin et al. [2] investigated control of a biped robot.
Wang et al. [26] addressed swing-up control of the Furuta pendulum,
but a step pulse in the control action, which is a deviation from the
standard terminology, is referred to as impulse control. The use of
impulsive force provides the scope for a large change in velocity over
a short time interval, and this property is exploited in this paper for
swing-up of the second link with joint limit restrictions imposed on the
first link. Our impulse–momentum approach can be profitably applied
to control problems of other underactuated systems, such as the acrobot
and biped robots, but we do not discuss these problems here to focus
on the pendubot problem.

This paper is organized as follows. In Section II, we present the
dynamics of the pendubot and derive expressions for the force of inter-
action between the two links, the holding torque, and the braking torque.
In Section III, we design rest-to-rest maneuvers of the first link about
its vertically upright configuration that results in net gain in energy of
the second link. It is assumed that the first link is quickly brought to rest
at the end of each maneuver by the application of an impulsive brak-
ing torque. The algorithm for swing-up and subsequent stabilization of
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the desired equilibrium is presented in Section IV. Section V provides
simulation results based on pendubot parameters in the literature. In
this section, we additionally validate the impulse–momentum model of
rapid braking and compare the control effort required by our algorithm
with that in the literature. Section VI provides concluding remarks.

II. SYSTEM DYNAMICS

A. Equations of Motion

Consider the pendubot in Fig. 1. Assuming no friction in the joints,
the equation of motion can be obtained using the Lagrangian formula-
tion as follows [8]:

A(θ)θ̈ + B(θ, θ̇)θ̇ + G(θ) = T (1)

where

θ =
(

θ1

θ2

)
T =

(
τ
0

)
(2)

and A(θ), B(θ, θ̇), and G(θ) given by the expressions

A(θ) =
[

q1 + q2 + 2q3C2 q2 + q3C2

q2 + q3C2 q2

]
(3)

B(θ, θ̇) = q3S2

[
−θ̇2 −(θ̇1 + θ̇2 )
θ̇1 0

]
(4)

G(θ) = g

[
q4C1 + q5C12

q5C12

]
(5)

are the inertia matrix, matrix containing terms resulting in the Cori-
olis and centrifugal forces, and vector of gravity forces, respectively.
In (3)–(5), qi , i = 1, 2, . . . , 5 are constants and have the following
expressions:

q1 = m1d
2
1 + m2 l

2
1 + I1

q2 = m2d
2
2 + I2

q3 = m2 l1d2

q4 = m1d1 + m2 l1

q5 = m2d2 . (6)

The previous constants qj ’s are the same as the constants θj ’s, j =
1, 2, . . . , 5 in the literature [7], [19], for example.

B. Force of Interaction Between the Two Links

By applying the Newton–Euler method [8], the forces of interaction
between the two links can be computed as follows:

Fx = m2

[
−d2 (θ̇1 + θ̇2 )2 + l1 (θ̈1S2 − θ̇2

1 C2 ) + gS12

]
Fy = m2

[
d2 (θ̈1 + θ̈2 ) + l1 (θ̈1C2 + θ̇2

1 S2 ) + gC12

]
. (7)

The forces Fx and Fy act along the x- and y-direction, respectively,
as shown in Fig. 2. The resultant of Fx and Fy , denoted as FR , can
be decomposed into a workless constraint force along the length of the
first link and the component F that does positive work on the second
link. The component F can be expressed in terms of Fx and Fy as
follows:

F = Fx S2 + Fy C2

= m2

[
l1 θ̈1 + d2 (θ̈1 + θ̈2 )C2 − d2 (θ̇1 + θ̇2 )2S2 + gC1

]
. (8)

Fig. 2. Forces of interaction between the two links of the pendubot.

The total energy of the second link can be expressed as follows:

E2 =
1
2
I2 (θ̇1 + θ̇2 )2 +

1
2
m2�v2 · �v2 + m2 g(l1S1 + d2S12 ) (9)

where �v2 is given by the expression

�v2 = −
[
l1 θ̇1S1 + d2 (θ̇1 + θ̇2 )S12

]
�i

+
[
l1 θ̇1C1 + d2 (θ̇1 + θ̇2 )C12

]
�j. (10)

By differentiating the expression for E2 , we get

Ė2 = m2 l1 θ̇1

×
[
l1 θ̈1 + d2 (θ̈1 + θ̈2 )C2 − d2 (θ̇1 + θ̇2 )2S2 + gC1

]
. (11)

Using (8), we can verify that Ė2 = F l1 θ̇1 . This is not surprising since
l1 θ̇1 is the velocity of the point of application of the force F and has
the same direction as that of F .

C. Holding Torque

We compute the torque required to hold the first link fixed, i.e., set
θ̇1 = 0. By substituting θ̇1 = θ̈1 = 0 in (1), we get[

q2 + q3C2

q2

]
θ̈2 −

[
q3S2 θ̇2

2
0

]
+ g

[
q4C1 + q5C12

q5C12

]
=
(

τh

0

)
. (12)

By eliminating θ̈2 from the equations in (12), τh can be expressed as
follows:

τh = −q3S2 θ̇2
2 + g

[
q4C1 − q3q5

q2
C2C12

]
. (13)

The holding torque in (13) will be used in Section IV in our algorithm
for swing-up control.

D. Braking Torque

We consider braking action that results in exponential decay of θ̇1

to zero. Therefore, we assume

θ̈1 = −k1 θ̇1 , k1 > 0 (14)

where k1 is a positive constant that will control the rate of decay of θ̇1 .
To compute the torque required for braking, we multiply (1) with the
inverse of the inertia matrix to obtain(

θ̈1

θ̈2

)
=

1
q1q2 − q2

3 C2
2

[
q2τ + h1

−(q2 + q3C2 )τ + h2

]
(15)
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Fig. 3. Effect of suddenly stopping the first link of the pendubot.

where h1 and h2 are given by the expressions

h1 = q2q3 (θ̇1 + θ̇2 )2S2 + q2
3 θ̇2

1 S2C2 + g(q3q5C2C12 − q2q4C1)

(16)

h2 = −(θ̇1 + θ̇2 )2 (q2q3 + q2
3 C2 )S2

− (q1 + q3C2 )q3 θ̇
2
1 S2 − g {q3q5C2C12

−(q2 + q3C2 )q4C1 + q1q5C12} . (17)

By substituting (14) in the first equation of (15), we get

τb = − 1
q2

[
k1 θ̇1 (q1q2 − q2

3 C2
2 ) + h1

]
. (18)

When the first joint comes to rest, the braking torque becomes equal to
the holding torque. This can be verified from (13) and (18).

III. ENERGY CONSIDERATIONS OF THE SECOND LINK

A. Effect of Suddenly Stopping the First Link

A large value of gain k1 in the expression for the braking torque
in (18) will result in sudden stopping of the first link. This action of
suddenly stopping the first link has the effect of an impulsive force and
an impulsive moment being applied on the second link, as shown in
Fig. 3. The impulsive force results in a change in linear momentum of
the second link, and the impulsive moment results in a change in angular
momentum. The change in momenta can be expressed as follows:

�Fimp ∆t = m2 ( �v+
2 − �v−

2 ) (19)

�Mimp ∆t = �r2 × �Fimp ∆t = I2 θ̇+
2 − I2 (θ̇−

1 + θ̇−
2 ) (20)

where ∆t is the short interval of time over which the impulsive

force and impulsive moment act, and �v+
2 and �v−

2 are given by
the expressions

�v+
2 = d2 θ̇+

2 (−S12�i + C12�j) (21)

�v−
2 = −

[
l1 θ̇−

1 S1 + d2 (θ̇−
1 + θ̇−

2 )S12

]
�i

+
[
l1 θ̇−

1 C1 + d2 (θ̇−
1 + θ̇−

2 )C12

]
�j (22)

which can be obtained from (10). The vector �r2 is shown in Fig. 3 and
has the form

�r2 = −d2 (C12�i + S12�j). (23)

Substituting (19), (21), (22), and (23) into (20), we get

θ̇+
2 = θ̇−

2 +
[
1 +

l1m2d2C2

I2 + m2d2
2

]
θ̇−

1 . (24)

Since there is no change in potential energy over the time interval ∆t,
the change in total energy of the second link is due to the change in its
kinetic energy alone and is equal to

∆E2 =
1
2
(I2 + m2d

2
2 )(θ̇

+
2 )2 − 1

2
I2

(
θ̇−

1 + θ̇−
2

)2

− 1
2
m2

[
l21 (θ̇−

1 )2 + d2
2 (θ̇

−
1 + θ̇−

2 )2 + 2l1d2 θ̇
−
1 (θ̇−

1 + θ̇−
2 )C2

]
.

(25)

By substituting (24) into (25), we express the change in the total energy
of the second link in terms of the velocity of the first link prior to
stopping as follows:

∆E2 =
1
2
m2 l

2
1

[
m2d

2
2C

2
2

I2 + m2d2
2
− 1
]

(θ̇−
1 )2 . (26)

Since m2d
2
2C

2
2 < (I2 + m2d

2
2 ), ∆E2 ≤ 0 and ∆E2 = 0, if and only if

θ̇−
1 = 0. Clearly, the total energy of the second link decreases whenever

the first link is stopped suddenly.

B. Rest-to-Rest Maneuver of the First Link

Consider a maneuver in which the first joint starts from rest and is
brought back to rest through the application of a braking torque using
a large gain k1 . Taking into account the loss of energy due to sudden
stopping, which is given by (26), the net work done on the second link
due to the rest-to-rest maneuver can be computed as follows:

∆E2 =
∫

F l1dθ1 +
1
2
m2 l

2
1

[
m2d

2
2C

2
2

I2 + m2d2
2
− 1
]

(θ̇−
1 )2

≥
∫

F l1 θ̇1dt − 1
2
m2 l

2
1 (θ̇−

1 )2 (27)

where F is given by the expression in (8). To ensure ∆E2 > 0, we
choose F as follows:

F = m2

[
(1 + k2 )l1 θ̈1

]
(28)

where k2 is a positive constant. Indeed, substitution of (28) into (27)
gives

∆E2 ≥ l1

∫
F θ̇1dt − 1

2
m2 l

2
1 (θ̇−

1 )2

= l1

∫
m2

[
(1 + k2 )l1 θ̈1

]
θ̇1dt − 1

2
m2 l

2
1 (θ̇−

1 )2

=
[

1 + k2

2

]
m2 l21

∫
2θ̇1 θ̈1 dt − 1

2
m2 l

2
1 (θ̇−

1 )2

=
[

1 + k2

2

]
m2 l21 (θ̇−

1 )2 − 1
2
m2 l

2
1 (θ̇−

1 )2

=
1
2

k2 m2 l21 (θ̇−
1 )2 > 0. (29)

By equating (8) and (28), we get the constraint

d2 (θ̈1 + θ̈2 )C2 − d2 (θ̇1 + θ̇2 )2S2 + gC1 = k2 l1 θ̈1 .
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Fig. 4. For the rest-to-rest maneuvers, the first link configuration satisfies
(π/2 − α) ≤ θ1 ≤ (π/2 + α).

Substitution of this constraint in (1) gives us the expression for the
control torque

τc =
[

q1q2 − q2
3 C2

2

k2 l1q2 + d2q3C2
2

] {
gC1 − d2 (θ̇1 + θ̇2 )2S2

}
+
[

1
k2 l1q2 + d2q3C2

2

]
{d2 (h1 + h2 )C2 − k2 l1h1} (30)

where h1 and h2 were defined earlier by (16) and (17), respectively.
From the analysis in this section, it is clear that the net value of E2 will
increase if the first joint is driven using the torque expression in (30)
and then stopped suddenly.

It is important to note that at any time during a rest-to-rest maneuver,
while the first link is still in motion, it is possible to compute

1) E2 from the values of θ1 , θ̇1 , θ2 , and θ̇2 ;
2) energy loss that would result from stopping the first link instan-

taneously from (26).
When the difference of the energy values in 1) and 2) is equal to E2T ,

the motion of the first link can be quickly stopped so that E2 ≈ E2T .

IV. ALGORITHM FOR SWING-UP CONTROL

A four-step algorithm is proposed for swing-up control of the pen-
dubot followed by asymptotic stabilization of the desired equilibrium.
We define two constants that appear in the discussion of the algorithm

q6 ≡
√

m2gl1
q2

, q7 ≡ m2d
2
2

q2
< 1.

1) Initialization:
a) Linearize the dynamic equations of the pendubot in

(1) about the desired equilibrium (θ1 , θ̇1 , θ2 , θ̇2 ) =
(π/2, 0, 0, 0).

b) Design a linear controller to render the desired equilib-
rium locally asymptotically stable. Let RA define the re-
gion of attraction of the desired equilibrium.

c) Choose a small angle α, α > 0 such that the configura-
tion (θ1 , θ̇1 , θ2 , θ̇2 ) = [π/2 − γ, 0, γ, 2q6 sin(γ/2)] lies
inside RA for all values of γ ∈ [−α, α]. This will al-
ways be possible since this configuration converges to the
desired equilibrium (π/2, 0, 0, 0) as α → 0.

2) Swing-up control of the first link:
Drive the first link from its initial configuration to any config-
uration that satisfies (π/2 − α) ≤ θ1 ≤ (π/2 + α), θ̇1 = 0, as
shown in Fig. 4.

Fig. 5. Second link is shown in its “vertically down” configuration during a
rest-to-rest maneuver.

3) Swing-up control of the second link:
a) Conduct rest-to-rest maneuvers of the first link about

the vertically upright configuration with θ1 satisfying
(π/2 − α) ≤ θ1 ≤ (π/2 + α). From our discussion in
the last section, we know that each rest-to-rest maneuver
will increase the value of E2 . In particular, the following
procedure will be adopted: The holding torque, i.e., τh in
(13), will be applied to hold the first link fixed. To initiate
the motion of the first link in the positive (counterclock-
wise) direction, the torque expression in (30) will be used
when it is greater than τh —see Discussion 1 after the
fourth step of the algorithm. To initiate the motion of the
first link in the negative (clockwise) direction, the torque
expression in (30) will be used when it is less than τh —see
Discussion 1. As the first link approaches the boundary of
the interval [(π/2 − α), (π/2 + α)], the braking torque
τb in (18) will be used; a large value of k1 will be used to
quickly stop the motion of the first link.

b) Terminate the rest-to-rest maneuvers with E2 ≈ E2T .
From our discussion in the last section, we know that
this can be accomplished by monitoring the states of the
pendubot. Then, the pendubot configuration will satisfy
(π/2 − α) ≤ θ1 ≤ (π/2 + α), θ̇1 = 0, and E2 ≈ E2T .

4) Stabilization:
With (π/2 − α) ≤ θ1 ≤ (π/2 + α), θ̇1 = 0, and E2 ≈ E2T ,
the second link will behave like a pendulum. When the sec-
ond link reaches its highest potential energy configuration, the
pendubot configuration will be inside RA —see Discussion 2.
Invoke the linear controller, which is designed in the first step of
the algorithm, to stabilize the desired equilibrium.

Discussion 1

For swing-up of the second link in the third step of the algorithm,
τc has to be greater than τh for some values of θ2 , θ̇2 and less than
τh for other values of θ2 , θ̇2 when (π/2 − α) ≤ θ1 ≤ (π/2 + α) and
θ̇1 = 0. We now show that these conditions will indeed be satisfied.
For θ̇1 = 0, the difference in the torques can be shown to be equal to

Π(θ1 , θ2 , θ̇2 ) ≡ (τc − τh )θ̇1 =0

= g [C1 − q7 C2C12 ] − d2S2 θ̇
2
2 . (31)

Now consider the joint configuration (θ1 , θ2 ) = (π/2 − β,−π +
β), β ∈ (0, α], as shown in Fig. 5(a), where the second link is ver-
tically down. During swing-up, the second link has to pass through
this configuration. Since S2 = − sin β < 0, we have the following
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TABLE 1
COMPARISON OF SIMULATION RESULTS OF BRAKING WITH ANALYTICAL RESULTS OF SUDDEN STOPPING

Fig. 6. Plot showing regions in the θ1 –θ2 space, where Π > 0 and Π < 0.

from (31):
Π ≥ g [C1 − q6 C2C12 ] .

A plot of the right-hand side of the previous equation, as shown in Fig. 6,
indicates that Π > 0 for (θ1 , θ2 ) = (π/2 − β,−π + β), β ∈ (0, α],
for feasible values of α and q6 . This implies that the control torque
τc can move the first link in the counterclockwise direction. A similar
analysis indicates that Π < 0 for the configuration (θ1 , θ2 ) = (π/2 +
β,−π − β), β ∈ (0, α], as shown in Fig. 5(b). This configuration is,
therefore, conducive for the first link to move in the clockwise direction.

Discussion 2

With (π/2 − α) ≤ θ1 ≤ (π/2 + α), θ̇1 = 0, and E2 ≈ E2T , the
second link will behave like a pendulum. At its highest potential energy
configuration, the second link configuration will satisfy θ2 = π/2 −
θ1 . The velocity of the second link can, therefore, be computed as
follows:

E2 |θ̇1 =0 = E2T ⇒ θ̇2
2 = 2q2

6 (1 − S1 ).

By expressing θ1 = π/2 − γ, γ ∈ [−α, α], we can describe the pen-
dubot configuration as

(θ1 , θ̇1 , θ2 , θ̇2 ) =
[

π

2
− γ, 0, γ, 2q6 sin

(
γ

2

)]
which lies inside RA through choice of α during initialization.

V. NUMERICAL SIMULATIONS

We present simulation results for two sets of kinematic and dynamic
parameters of the pendubot. The first set of parameters, which are taken
from Orlov et al. [17], are presented as follows:

m1 = 0.132 kg, l1 = 0.203 m

m2 = 0.088 kg, l2 = 0.254 m

d1 = 0.1574 m, I1 = 0.00362 kg · m2

d2 = 0.1109 m, I2 = 0.00114 kg · m2 . (32)

For these parameters, E2T was evaluated to be 0.2710 J.

A. Impulse–Momentum Model of Braking

In Section III-A, we modeled sudden stopping of the first link by
the action of an impulsive force and an impulsive moment on the sec-
ond link. Here, we show that this modeling assumption is accurate for
large values of gain k1 in the expression for the braking torque in (18),
which we know will cause sudden stopping of the first link. We con-
sider the pendubot configuration (θ1 , θ̇1 , θ2 , θ̇2 ) = (0.0, 2.0, 0.0, 3.0),
where the units are radians and radians per second. If the first joint is
stopped instantaneously, the velocity of the second joint and change
in energy of the second link can be computed using (24) and (26), re-
spectively. Specifically, using θ̇−

1 = 2.0 rad/s and θ̇−
2 = 3.0 rad/s, these

values can be computed as

θ̇+
2 = 6.783 rad/s, ∆E2 = −0.0037 J. (33)

The values of θ̇+
2 and ∆E2 , which are obtained from simulations, are

shown in Table I for different values of gain k1 used in the expression
for the braking torque in (18). It is clear that the difference of these
values from those in (33) is negligible for large values of gain k1 . Also,
as expected, large values of k1 require less time for the first link to
come to rest and small angle of travel of the first link before it comes
to rest. In our simulation of swing-up control, which is presented next,
we used a value of k1 = 1000.

B. Swing-Up Control and Stabilization

As part of the initialization (first step of the algorithm), a linear
controller is designed to stabilize the desired equilibrium. Through
repeated simulation of the closed-loop system behavior, the maximum
value of α is found to be 10◦.1 The initial configuration of the pendubot
is chosen as

(θ1 , θ̇1 , θ2 , θ̇2 ) = (90.0, 0.0,−135.0, 0.0) (34)

where the units are degrees and degrees per second. This choice of
initial configuration eliminates the need for the second step of the
algorithm, which is trivial. The simulation results for the third and
fourth steps of the algorithm are shown in Fig. 7; the plots show the
two joint angles, their velocities, the control torque, and the energy of
the second link.

It can be seen from Fig. 7 that E2 reaches the value of E2T at t =
ts = 2.97 s. At this time, the second link is close to its vertically upright
configuration, and the linear controller is invoked for stabilization.
The swing-up control of the second link is achieved over the interval
t ∈ [0, 2.97]s through a series of rest-to-rest maneuvers separated by
periods of time over which the first joint is held fixed. It can be seen
from Fig. 7 that E2 increases for each rest-to-rest maneuver but remains
constant during times when the first link is held fixed. The increase
of E2 during each rest-to-rest maneuver is achieved through positive
work done by the first link followed by energy loss due to braking.
During braking, the control torques peak, but the peak torques act over
short intervals of time. This is expected since the braking torques are

1This value, of course, depends on the gains of the linear controller used for
stabilization.
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Fig. 7. Plot of joint angles, joint angle velocities, control torque, and energy
of second link for the first simulation in Section V.

impulsive in nature due to the choice of a large value of gain k1 . Despite
its impulsive nature, the maximum value of the torque required by our
algorithm is 1.0 N·m—this is less than the maximum torque of 1.7 N·m
required by the algorithm proposed by Orlov et al. [17].

C. Comparison With Experimental Results

It behooves us to point out that the maximum torque required by our
algorithm, by virtue of being impulsive in nature, will be limited by
the peak torque of the motor and not the maximum continuous torque.
The peak torque of a motor is greater than the maximum continuous
torque by a factor that varies from motor to motor. A search of the
literature published by motor manufacturers indicates that this factor
can vary in the range of 2–10 and is equal to 4 for a specific example
worked out in the Handbook of Electric Motors [24]. To check feasi-
bility of hardware implementation of our algorithm, we now compare
our simulation results with experimental results published in the lit-
erature. To this end, we choose the following kinematic and dynamic
parameters of the pendubot:

m1 = 1.0367 kg, l1 = 0.1508 m

m2 = 0.5549 kg, l2 = 0.2667 m

d1 = 0.1206 m, I1 = 0.0031 kg·m2

d2 = 0.1135 m, I2 = 0.0035 kg·m2 . (35)

The parameters result in the following values of qj , j ∈ {1, 5}:

q1 = 0.0308 kg·m2 , q2 = 0.0106 kg·m2

q3 = 0.0095 kg·m2 , q4 = 0.2087 kg·m2

q5 = 0.0629 kg·m2 (36)

which are almost identical to the values of θj (θj ≡ qj ), j ∈ {1, 5} in
the paper by Orlov et al. [19] with experimental data for the control
torque.

Fig. 8. Plot of joint angles, joint angle velocities, control torque, and energy
of second link for the second simulation in Section V.

For the parameter values in (35), E2T was computed as 1.438 J. For
the initial configuration of the pendubot given by (34), the simulation
results are shown in Fig. 8. It can be seen from this figure that swing-up
and stabilization are achieved in less than 4 s. The maximum torque
required by our algorithm is approximately 15 N·m. In the experimental
work by Orlov et al. [19], the maximum torque required was 7 N·m
for the nominal model and 30 N·m for the model with disturbances.
It suffices to say that the motor used in the experimental work [19]
can be used for implementation of our algorithm. A comparison of our
results with the results for the nominal model alone indicates that our
maximum torque is greater than the maximum torque in [19] by a factor
of 2.1. This is acceptable since the torque required by our algorithm is
intermittent, and its maximum value is limited by the peak torque of the
motor, whereas the maximum torque in [19] is limited by the maximum
continuous torque (which is much less than the peak torque [24]) due
to its high-frequency components.

For our algorithm, the power requirement of the motor will be high
intermittently for very brief periods of time. It is likely to exceed the
power specifications of the motor, but this is not a concern since motor
power specifications are based on continuous, and not intermittent,
operation.

VI. CONCLUSION

This paper presents a new solution to the swing-up control problem
of the pendubot. The solution is based on taking the first link to its
vertically upright position and executing a series of rest-to-rest maneu-
vers about this position with a small amplitude of oscillation. Using
the principles of work–energy and impulse and momentum, the rest-to-
rest maneuvers are designed to increase the energy of the second link.
The rest-to-rest maneuvers are carried out till the energy of the sec-
ond link is approximately equal to its maximum potential energy. This
results in the pendubot configuration reaching a neighborhood of the
desired equilibrium from which the equilibrium can be stabilized using
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a linear controller. Simulation results are presented to demonstrate the
feasibility of the proposed approach. Our future work will focus on
experimental verification of the swing-up control algorithm presented
in this paper and extension of the impulse–momentum approach to
swing-up control of the acrobot and control of other underactuated
mechanical systems.
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