
Dazhong Wu1

Department of Mechanical

and Aerospace Engineering,

University of Central Florida,

Orlando, FL 32816

e-mail: Dazhong.Wu@ucf.edu

Connor Jennings
Department of Industrial and

Manufacturing Engineering,

Pennsylvania State University,

University Park, PA 16802

e-mail: connor@psu.edu

Janis Terpenny
Department of Industrial and

Manufacturing Engineering,

Pennsylvania State University,

University Park, PA 16802

e-mail: jpt5311@psu.edu

Soundar Kumara
Department of Industrial and

Manufacturing Engineering,

Pennsylvania State University,

University Park, PA 16802

e-mail: skumara@psu.edu

Robert X. Gao
Department of Mechanical

and Aerospace Engineering,

Case Western Reserve University,

Cleveland, OH 44106

e-mail: robert.gao@case.edu

Cloud-Based Parallel
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Tool Wear Prediction
The emergence of cloud computing, industrial internet of things (IIoT), and new machine
learning techniques have shown the potential to advance prognostics and health manage-
ment (PHM) in smart manufacturing. While model-based PHM techniques provide
insight into the progression of faults in mechanical components, certain assumptions on
the underlying physical mechanisms for fault development are required to develop pre-
dictive models. In situations where there is a lack of adequate prior knowledge of the
underlying physics, data-driven PHM techniques have been increasingly applied in the
field of smart manufacturing. One of the limitations of current data-driven methods is
that large volumes of training data are required to make accurate predictions. Conse-
quently, computational efficiency remains a primary challenge, especially when large
volumes of sensor-generated data need to be processed in real-time applications. The
objective of this research is to introduce a cloud-based parallel machine learning algo-
rithm that is capable of training large-scale predictive models more efficiently. The ran-
dom forests (RFs) algorithm is parallelized using the MapReduce data processing
scheme. The MapReduce-based parallel random forests (PRFs) algorithm is implemented
on a scalable cloud computing system with varying combinations of processors and mem-
ories. The effectiveness of this new method is demonstrated using condition monitoring
data collected from milling experiments. By implementing RFs in parallel on the cloud, a
significant increase in the processing speed (14.7 times in terms of increase in training
time) has been achieved, with a high prediction accuracy of tool wear (eight times in
terms of reduction in mean squared error (MSE)). [DOI: 10.1115/1.4038002]

Keywords: data-driven prognostics, cloud computing, machine learning, prognostics and
health management, tool wear prediction, random forests

1 Introduction

Mechanical components such as shafts, bearings, and gears are
subject to failures resulting from excessive load, corrosion, over-
heating, vibration, fracture, and material fatigue [1,2]. Prognostics
and health management (PHM) is a discipline that predicts health
condition and remaining useful life based on previous and current
operating conditions. PHM techniques fall into two categories:
model-based and data-driven prognostics [3–5]. Model-based
prognostics refers to approaches based on analytical models of
system behaviors derived from physical laws or probability distri-
butions. Model-based prognostics includes methods based on
Wiener and Gamma processes [6], hidden Markov models
(HMMs) [7], Kalman filter [8], and particle filter [9]. Model-
based PHM methods are generally effective for applications
where the underlying physics is well understood. However, in-
depth physical knowledge of system failures is not always avail-
able or sometimes too expensive to acquire. Another limitation of
model-based PHM methods is that oftentimes certain distribu-
tional assumptions such as Gaussian distributions have to be made
in order to develop close-form representations. However, these
assumptions may not hold true in practice, particularly for com-
plex systems.

Data-driven prognostics trains predictive models using statisti-
cal methods or machine learning algorithms. Some of the well-
known data-driven prognostic methods include autoregressive
model, multivariate adaptive regression, fuzzy set theory, artificial
neural networks (ANNs) with variants such as adaptive
neuro-fuzzy inference system, decision trees, logistic regression,
Bayesian belief network, support vector machines (SVMs), and
principal component analysis (PCA). While data-driven
approaches may require large volumes of quality training data, an
in-depth understanding of system physical behaviors is not a pre-
requisite [10]. In addition, data-driven prognostics is typically
more effective than model-based prognostics for complex systems
where underlying physics is not well known. While classical data-
driven approaches such as ANNs and SVMs have been widely
investigated in applications such as tool wear prediction, little
research has been reported on the capabilities of cloud-based par-
allel machine learning algorithms for predictive analytics in smart
manufacturing [11–14].

To complement traditional model-based and data-driven PHM
techniques, a cloud-based parallel machine learning algorithm
based on random forests (RFs) is introduced. According to
Refs. [15] and [16], some of the desirable characteristics of RFs
are: (1) RFs can process a large number of input variables without
overfitting because RFs use bootstrap aggregating to generate
replicate data sets and (2) RFs do not require cross validation
because each tree is built using a different bootstrap sample from
the original data. More importantly, because the tree construction
process in RFs is independent of each other, RFs are relatively
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easy to be parallelized. Due to this unique characteristic, RFs
have the potential to process large volumes of measurement data
generated from machine condition monitoring systems on multi-
core processors or clusters [17–21]. In this paper, a new scalable
data-driven approach to PHM is introduced to generate big data
analytics more effectively and efficiently [20,22].

The main contributions of this paper include:

� A MapReduce-based parallel random forests (PRFs) algo-
rithm is developed to predict tool wear in milling operations.
This new algorithm is implemented on a scalable, high per-
formance computing cloud platform.

� The efficiency of the cloud-based PRFs algorithm is eval-
uated using training time and relative speedup ratio. The per-
formance of cloud-based PRFs algorithm is compared with
that of the original RFs algorithm that is implemented
sequentially.

The remainder of the paper is organized as follows: Sec. 2
reviews the related work on cloud computing, industrial internet
of things (IIoT)-enabled smart manufacturing, and prognostics for
machining processes. Section 3 introduces RFs and a parallel pro-
gramming framework (i.e., MapReduce). Section 4 presents a new
data-driven PHM approach for tool wear prediction using the
cloud-based PRFs algorithm. Section 5 presents an experimental
setup and experimental data acquired from multiple sensors (e.g.,
acoustic emission (AE) sensor, vibration sensor, and current sen-
sor). Section 6 discusses experimental results, demonstrates the
effectiveness of RFs, and evaluates the performance of the cloud-
based PRFs algorithm. Section 7 provides conclusions that include
a discussion of research contribution and future work.

2 Data-Driven Prognostics for Smart Manufacturing.

2.1 Cloud Computing and IIoT. Cloud-based manufacturing
was introduced to increase manufacturing productivity and reduce
costs by utilizing big data analytics, machine learning, high per-
formance computing, sensor networks, automation, and control
technologies [23–25]. Tao et al. [20] presented an overview of
applications of IIoT and cloud computing in smart manufacturing.
A conceptual framework of cloud computing and IIoT-based man-
ufacturing systems was introduced to connect manufacturing
machines as well as monitor manufacturing processes. Bi et al.
[26] presented the key requirements of IIoT infrastructures for
next-generation manufacturing systems. Some of the enabling
technologies for the development of IIoT infrastructures include
cloud computing, wireless sensor networks, radio-frequency iden-
tification, remote monitoring, data analytics, and communication
standards. Lee et al. [27] proposed a cyber-physical system archi-
tecture for IIoT-based manufacturing systems. The cyber-physical
system architecture consists of several layers such as digital con-
nection, data-to-information conversion, high-performance com-
puting infrastructure, cognition, and configuration layers. Wang
et al. [28] developed an assembly system for complex products
using IIoT and cloud computing. Experimental results have shown
that the cloud-based assembly system is capable of performing
assembly planning for aircraft engines very effectively. Mourtzis
et al. [29] introduced a cloud-based approach to process monitor-
ing and process planning in distributed manufacturing environ-
ments. Machine conditions and availability were monitored in real
time to identify optimal manufacturing process plans using cloud
storage and wireless sensor networks. To demonstrate the effec-
tiveness of the cloud-based monitoring system, three five-axis
CNC machines were equipped with angular velocity and current
sensors that measure spindle speed and energy consumption.
Sensor-generated streaming data were collected through a data-
acquisition system and transmitted to a remote cloud storage for
data mining. Mai et al. [30] presented a cloud-based additive man-
ufacturing system that enables users to create digital models and
fabricate parts via cloud-based CAD/CAM applications. By

connecting three-dimensional printers via the Internet and sensors,
additive manufacturing processes can be monitored and controlled
remotely. Wu et al. [2] presented a fog computing-based data-
driven PHM system that is capable of collecting real-time
machine condition data and monitoring the vibrations and energy
consumption of pumps. Fog computing reduces network latency
by moving computing infrastructure geographically closer to clus-
ters. Several classical machine learning algorithms were imple-
mented on a highly scalable public cloud to generate predictive
data analytics. In addition, wireless gateway devices were devel-
oped to provide connectivity between a factory floor and the
cloud.

2.2 Data-Driven Prognostics for Machining Processes. In
addition to cloud computing and IIoT, one of the most important
applications in smart manufacturing is diagnostics and prognos-
tics. Tool wear is the most commonly observed and unavoidable
phenomenon in manufacturing processes such as drilling, milling,
and turning [31,32]. The rate of tool wear is typically affected by
process parameters (e.g., cutting speed and feed rate), cutting tool
geometry, and properties of workpiece and tool materials. The
Taylor’s equation for tool life expectancy provides an approxima-
tion of tool wear [33]. However, with the rapid advancement of
sensing technology and increasing number of sensors equipped on
modern CNC machines, it is possible to predict tool wear more
accurately using various measurement data. This section presents
a review of model-based and data-driven prognostic approaches
for tool wear prediction.

The objective of model-based prognostics is to predict system
performance based on probability distributions. The limitation of
model-based prognostic methods is that certain stochastic or ran-
dom processes such as Wiener processes and Gamma processes
are assumed. The most popular model-based approaches to prog-
nostics include HMMs, Kalman filter, and particle filter. Ertunc
et al. [34] developed an online tool wear condition monitoring
system for drilling processes. Based on torque, force, and spindle
power signals collected during drilling operations, the health sta-
tus of cutting tools was predicted using HMMs. Atlas et al. [35]
developed a tool condition monitoring system for milling
processes using HMMs. Zhu et al. [36] proposed a multicategory
classification approach for tool flank wear state identification in
micromilling using continuous HMMs. Niaki et al. [21] developed
an approach for online tool flank wear estimation in milling opera-
tions using a Kalman filter. The Kalman filter can predict tool
flank wear with a maximum average error of 10%. Wang et al.
[22,37] proposed an enhanced particle filter method to predict tool
wear by integrating autoregressive models and the particle filter-
ing algorithm. The enhanced particle filter based on Bayesian
theory yields more accurate prediction of the state of tool wear as
well as quantifies the uncertainty of remaining useful life of cut-
ting tools. Wang and Gao [9] developed an adaptive resampling-
based particle filtering approach to predict tool wear in a dry-
milling operation on a high-speed CNC machine.

Some of the most commonly used data-driven approaches to
PHM include ANNs, decision trees, and support vector machines.
Elangovan et al. [38] presented a decision tree-based method for
tool wear prediction using the data generated from vibration sen-
sors. Ten-fold cross-validation was conducted to evaluate the per-
formance of the predictive model trained by the decision tree
algorithm. Experimental results have shown that the accuracy of
the decision tree-based method was 87.5%. Shi and Gindy [39]
developed a tool wear predictive model by combining least
squares support vector machines (LS-SVM) and PCA. PCA was
used to extract statistical features from multiple sensor signals.
The LS-SVM algorithm was used to predict tool wear using the
extracted features. A set of experiments was conducted on a verti-
cal broaching machine with high speed steel broaching tool.
Experimental results have shown that the LS-SVM algorithm can
predict the flank wear accurately. Wu et al. [40] evaluated the
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performance of three machine learning algorithms, including
ANNs, SVM, and RFs, for tool wear prediction using the data col-
lected from 315 milling tests. A set of statistical features were
extracted from the cutting force, vibration, and AE signal chan-
nels. Experimental results have shown that the predictive model
trained by RFs outperforms ANNs and SVM.

In summary, while earlier work introduced data-driven prog-
nostic methods based on classical machine learning algorithms
as well as developed cloud-based data acquisition and process
monitoring systems, little research has been reported on how
machine learning algorithms can be parallelized to process big
data as well as generate big data analytics for smart manufactur-
ing. This paper introduces a cloud-based parallel machine learn-
ing approach that is capable of predicting tool wear more
effectively and efficiently.

3 Random Forests and MapReduce

The objective of machine learning is to build a predictive model
from training data and make predictions on test data. Machine
learning techniques are typically classified into three broad cate-
gories, including supervised learning, unsupervised learning, and
collaborative filtering that uses both supervised and unsupervised
learning. Specifically, a supervised machine learning algorithm is
used to construct an estimator, which is able to predict the label of
an object given a set of features. Supervised machine learning
algorithms can be used for regression and classification. Regres-
sion focuses on predicting a continuous-valued attribute associ-
ated with an object. Classification focuses on identifying to which
category an object belongs. An unsupervised learning algorithm is
used to identify similarities between objects given input data with-
out labeled responses. One of the unsupervised machine learning
techniques is clustering. Clustering is concerned with grouping
together objects that are similar to each other and dissimilar to the
objects belonging to other clusters.

Figure 1 illustrates a typical supervised machine learning
process. Similar to unsupervised learning, supervised learning
algorithms require two types of input data: training and testing
data sets. A set of features or variables are extracted as input to a
learning algorithm based on the training data sets and labeled
data. A training set is a set of data used to discover predictive rela-
tionships. A test set is a set of data used to evaluate a predictive
model. Once a machine learning model is evaluated, it can be
used to predict a target or response variable based on independent
variables.

3.1 Random Forests. The RFs algorithm [15] is an ensemble
learning method for regression and classification by building a
large number of decision trees. Some of the important concepts
associated with RFs, including bootstrap aggregating or bagging,
splitting and stopping criterion, are presented as follows.

Bootstrap aggregating, also known as bagging, is a method that
improves the accuracy of RFs as well as helps avoid overfitting.
Given a training data set D ¼ fðx1; y1Þ; ðx2; y2Þ;…; ðxN ; yNÞg, bag-
ging generates B new training data sets Di of size N by sampling
from the original training data set D with replacement. The new

training data set Di is referred to as a bootstrap sample. By sam-
pling with replacement, some observations may be repeated in
each training data set Di. The number of regression trees B is a
tuning parameter. In general, as the number of regression trees
increases, the accuracy of the predictive model trained by RFs
will increase. Once a bootstrap sample is generated, a regression
tree is constructed based on the bootstrap sample. To split a
parent node into two children nodes, a variable or feature space
hb ¼ fx1; x2;…xm;…xNg needs to be defined. At each node, m
variables are randomly selected from the variable space hb. The
best split is chosen among m variables instead of all the N varia-
bles. The reason why a random subset of the variables or features
is selected is because the correlation of the regression trees can be
reduced. In RFs, the number of variables or features is a tuning
parameter. For regression, the number of features is typically one
third of the total number of predictors. In general, as the number
of variables increases, the bias will decrease, meanwhile, the cor-
relation of regression trees will increase.

To determine the best split for each node, a splitting variable
j and a cutting point s are defined. Two regions, R1ðj; sÞ and
R2ðj; sÞ, are defined based on the splitting variable and cutting
point

R1ðj; sÞ ¼ fXjXj � sg and R2ðj; sÞ ¼ fXjXj � sg (3.1)

The splitting criterion of RFs is to determine the splitting
variable j and the split point s that solve the following objective
function:

min
j;s

min
c1

X
xi2R1ðj;sÞ

ðyi � c1Þ2 þmin
c2

X
xi2R2ðj;sÞ

ðyi � c2Þ2
� �

(3.2)

The inner minimization can be solved by

bc1 ¼ aveðyijxi�R1ðj; sÞÞ and bc2 ¼ aveðyijxi�R2ðj; sÞÞ (3.3)

Once the best split is determined, the training data can be parti-
tioned into two subregions. Each resulting subregion represents a
children node. This splitting process is conducted recursively until
a predefined stopping criterion is satisfied. One of the most com-
monly used stopping criteria is that the splitting process proceeds
until the number of examples in Di falls below a threshold. An
alternative stopping criterion is to terminate the splitting process
until the depth of a regression tree reaches a threshold.

Suppose that the training data are partitioned into M regions
R1, R2, …, Rm. The response of the regression tree can be modeled
as follows:

Tbðx; hbÞ ¼
XM

m¼1

cmIðx�RmÞ (3.4)

where Ið:Þ is an indicator function. If its argument is true, then
the indicator function returns 1; otherwise 0. After B such trees
fTbðx; hbÞgB

1 are constructed, a prediction at a new data point x
can be made by averaging the responses from all the B regression
trees on x

Fig. 1 Supervised machine learning
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bf B

rf xð Þ ¼ 1

B

XB

b¼1

Tb x; hbð Þ (3.5)

The importance of a variable xi for predicting the response
variable Y is evaluated by averaging the sum of the weighted
reduction in residual sum of squares for all nodes t where xi is
used over the number of regression trees

VarImp xið Þ ¼
1

NT

X
T

X
t2T:v stð Þ¼xi

p tð ÞDi st; tð Þ (3.6)

where pðtÞDiðst; tÞ denotes the weighted reduction in residual sum
of squares by splitting an internal node t into two children nodes.
pðtÞ ¼ Nt=N denotes the proportion of the data points/samples at
node t. Nt denotes the number of samples at node t. N denotes
the total number of samples that is drawn to build a regression
tree. NT denotes the total number of regression trees in a random
forest. T denotes a regression tree structure. st denotes a split at
node t. vðstÞ denotes the splitting variable that is selected for the
split st. Diðst; tÞ ¼ iðtÞ � p1iðt1Þ � p2iðt2Þ. iðtÞ denotes the residual
sum of squares at node t. t1 and t2 denote the two children nodes
of node t.

With the RFs algorithm described earlier, a single point esti-
mate is calculated for a new instance. However, the single point
estimate does not estimate the dispersion of future observations.
To measure how reliable a prediction for a new instance is, it is
important to quantify uncertainty in predictions for RFs [41]. A
prediction interval is used to estimate an interval in which future
observations will fall with a certain probability. The conditional
distribution of Y, given X ¼ x, is defined by FðyjX ¼ xÞ
¼ PðY � yjX ¼ xÞ. For a continuous variable such as tool wear,
the a-quantile QaðxÞ is defined such that the probability of Y being
less than QaðxÞ is equal to a. The a-quantile function is defined as
QaðxÞ ¼ inffy : FðyjX ¼ xÞ � ag. A 95% prediction interval for
the value of Y is given by IðxÞ ¼ ½Q0:025ðxÞ;Q0:975ðxÞ�. To com-
pute prediction intervals for RFs, all the responses in the leaf
nodes of a random forest are recorded instead of the mean of the
responses. Based on these responses produced by the regression
trees, the conditional distribution of the response variable Y can
be calculated. Once the conditional distribution is calculated, the
a-quantile QaðxÞ can be calculated.

3.2 MapReduce Programming Framework. Parallel com-
puting is a means of improving the performance and efficiency of
algorithms by using multiple compute resources simultaneously to
solve a large-scale computational problem. In a parallel program,
a problem can be partitioned into a series of smaller subproblems,
and then solved concurrently. To develop a parallel machine
learning algorithm, it is important to identify a set of tasks that
can be processed concurrently. In the context of RFs, the tasks in
which multiple regression trees are constructed can execute con-
currently because the regression trees are de-correlated. MapRe-
duce is a programming framework that processes parallelizable
problems on a single machine with multicore CPUs or large clus-
ters of commodity hardware [42,43]. Figure 2 illustrates a high-

level view of the MapReduce architecture [44]. A master splits
the input data into multiple independent chunks according to the
number of cores. Each chunk is assigned to a mapper. A Map
function maps the input data to a set of intermediate <key, value>
pairs. The master collects the intermediate data from the mappers
and sorts the intermediate data by the keys. All the intermediate
data with the same key are subsequently grouped together and
passed to a Reduce function. The Reduce function reduces all the
intermediate pairs with the same key to a smaller set of values.

4 MapReduce-Based Parallel Random Forests

A MapReduce-based PRFs algorithm is developed to predict
tool wear in milling operations. The input of PRFs is training data
D ¼ ðxi; yiÞ, where i ¼ 1 to N, xi ¼ ðFX;FY ;FZ;VX;VY ;VZ;AEX;
AEY ;AEZÞ 2 Rp¼28, yi denotes the value of tool wear

FX ¼ fFmax
X ;Fmedian

X ;Fmean
X ;Fsd

X g

FY ¼ fFmax
Y ;Fmedian

Y ;Fmean
Y ;Fsd

Y g

FZ ¼ fFmax
Z ;Fmedian

Z ;Fmean
Z ;Fsd

Z g

VX ¼ fVmax
X ;Vmedian

X ;Vmean
X ;Vsd

X g

VY ¼ fVmax
Y ;Vmedian

Y ;Vmean
Y ;Vsd

Y g

VZ ¼ fVmax
Z ;Vmedian

Z ;Vmean
Z ;Vsd

Z g

AEX ¼ fAEmax
X ;AEmedian

X ;AEmean
X ;AEsd

X g

AEY ¼ fAEmax
Y ;AEmedian

Y ;AEmean
Y ;AEsd

Y g

AEZ ¼ fAEmax
Z ;AEmedian

Z ;AEmean
Z ;AEsd

Z g

Fmax
X ;Fmedian

X ; Fmean
X ; and Fsd

X denote the maximum, median,
mean, and standard deviation of the cutting forces in the X direc-
tion. Fmax

Y ;Fmedian
Y ; Fmean

Y ; and Fsd
Y denote the maximum, median,

mean, and standard deviation of the cutting forces in the Y direc-
tion. Fmax

Z ;Fmedian
Z ; Fmean

Z ; and Fsd
Z denote the maximum, median,

mean, and standard deviation of the cutting forces in the Z direc-
tion. Vmax

X ;Vmedian
X ; Vmean

X ; and Vsd
X denote the maximum, median,

mean, and standard deviation of vibrations in the X direction.
Vmax

Y ;Vmedian
Y ; Vmean

Y ; and Vsd
Y denote the maximum, median,

mean, and standard deviation of vibrations in the Y direction.
Vmax

Z ;Vmedian
Z ; Vmean

Z ; and Vsd
Z denote the maximum, median,

mean, and standard deviation of vibrations in the Z direction.
AEmax

X ;AEmedian
X ; AEmean

X ; and AEsd
X denote the maximum,

median, mean, and standard deviation of acoustic emissions in the
X direction. AEmax

Y ;AEmedian
Y ; AEmean

Y ; and AEsd
Y denote the maxi-

mum, median, mean, and standard deviation of acoustic emissions
in the Y direction. AEmax

Z ;AEmedian
Z ; AEmean

Z ; and AEsd
Z denote the

maximum, median, mean, and standard deviation of acoustic
emissions in the Z direction. A random forest was constructed
using B¼ 10,000 regression trees. Given the training data set
D ¼ ðxi; yiÞ, 10,000 bootstrap samples were generated from the

Fig. 2 MapReduce programming framework
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training data set. Based on the method presented in Sec. 3, nine
features (m ¼ ðp=3Þ; p ¼ 28Þ were randomly selected from 28 sta-
tistical features when splitting a parent node into two children
nodes. For each split, a splitting variable and a cutting point were
determined by solving Eq. (3.2). This splitting process will pro-
ceed until the stopping criterion (number of instances in a node is
less than 5) is satisfied. Figure 3 illustrates the typical process of
building binary regression trees. Figure 3 shows two simple illus-
trative examples of regression trees with nine nodes. The root
nodes have 315 instances (cases). Fmax and Vmax were selected as
the splitting variables, respectively. 0.1 and 0.05 were selected as
the cutting points, respectively. Take the regression tree on the
left as an example. The root node is split into two children nodes
(left and right nodes). The instances with Fmax < 0:1 are in the
right children node; The instances with Fmax � 0:1 are in the left
children node. After building 10,000 regression trees of the RFs,
the predicted value of tool wear on a new data point of the test
data set can be calculated by taking the mean of all the predicted
values from the regression trees.

Because constructing regression trees in RFs can be performed
concurrently, the MapReduce programming model enables auto-
matic parallelization and distribution of training predictive models
using RFs on a single computing node with multiple cores or large
clusters of commodity hardware.

Figure 4 shows a flowchart that illustrates the MapReduce-
based PRFs algorithm. The detailed steps are as follows:

Step 1: Assign an ID to an individual bootstrap sample. This ID
number is the key value associated with each bootstrap sample.
The ID number ranges from 1 to N where N denotes the number
of cores.

Step 2: Partition the bootstrap samples into N segments based
on their key values. Assign the bootstrap samples with different
key values to different CPU cores.

Step 3: Construct regression trees using the bootstrap samples
on each core and generate a list of <key, value> pair (<sample
ID, the value of tool wear>).

Step 4: Aggregate the <key, value> pairs with the same key
value.

Fig. 3 Regression tree growing process

Fig. 4 MapReduce-based PRF
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5 Experimental Setup

Figure 5 illustrates the schematic diagram of the experimental
setup. The experiment was conducted on a R€oders Tech RFM 760
three-axis high-speed vertical CNC machine [45]. Seven signal
channels, including cutting force, vibration, and acoustic emis-
sion, were monitored using a Kistler piezoelectric dynamometer,
three Kistler piezoelectric accelerometers, and a Kistler acoustic
emission sensor. The piezoelectric dynamometer was mounted on
the table of the CNC to collect cutting force data in X, Y, Z dimen-
sions. The piezoelectric accelerometers were mounted on a work-
piece to collect vibration data in X, Y, Z dimensions. The AE
sensor was also mounted on the workpiece to collect AE data dur-
ing the milling experiment. AE occurs when a material undergoes

irreversible changes (e.g., crack formation or plastic deformation)
in its internal structure. Table 1 summarizes the signal channels
and measurement data.

The example cutting force, vibration, and AE signals collected
from the dynamometer, accelerometer, and AE sensors are shown
in Figs. 6–8, respectively. Figures 6–8 show a total of 127,399
sampling signals collected from one cutting test.

The material of the workpiece used in the milling experiment
was stainless steel. 315 cutting tests were conducted by the
following two steps:

(1) Remove material from the workpiece using a predefined
tool path;

(2) Measure the amount of tool wear using a LEICA MZ12
high-performance stereomicroscope.

Table 2 summarizes the operating conditions of the milling
experiment. The total size of the condition monitoring data col-
lected from 315 cutting tests is 9 GB.

6 Results and Discussions

6.1 Feature Generation and Extraction. In this section, fea-
ture generation and extraction are presented. Feature generation
involves the process of defining statistical features or variables
based on raw data collected from sensors. In this study, a set of

Fig. 5 Experimental setup

Table 1 Signal channels and measurement data

Signal channel Measurement data

Channel 1 FX: cutting force (N) in the X-axis
Channel 2 FY : cutting force (N) in the Y-axis
Channel 3 FZ: cutting force (N) in the Z-axis
Channel 4 VX: vibration (g) in the X-axis
Channel 5 VY : vibration (g) in the Y-axis
Channel 6 VZ : vibration (g) in the Z-axis
Channel 7 AE: acoustic emission (V)

Fig. 6 Cutting force in X direction

Fig. 8 Acoustic emission

Fig. 7 Vibration in X direction

Table 2 Operating conditions of the milling tests

Parameter Value

Spindle speed 10,400 rpm
Feed rate 1555 mm/min
Y depth of cut 0.125 mm
Z depth of cut 0.2 mm
Sampling rate 50 kHz/channel
Material Stainless steel
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statistical features (28 features), including maximum, median,
mean, and standard deviation, was generated from the cutting
force, vibration, and acoustic emission raw data. The importance
of these features for predicting tool wear was evaluated using the
variable importance metric expressed in Eq. (3.6). Figure 9 shows
the variable importance scores for the 14 most important features.
The statistical features with greater variable importance scores are
more significant. For example, the standard deviation of vibration
in the X direction (vb_x_std) with a feature importance score of
231,519.6 is the most significant feature.

6.2 Prediction of Tool Wear Based on Random Forests.
After generating the statistical features, these feature data are fed
into the RFs algorithm. A predictive model for tool wear

prediction was trained using 10,000 regression trees. A total of
315 instances in the input data set was divided into training and
validation data sets, respectively. To train the predictive model,
two thirds of the 315 instances were used for the development of
the predictive model. The remainder of the 315 instances was
used for model validation. The tool wear prediction results are
shown in Fig. 10. The data points in Fig. 10 represent observed
(true) and predicted tool wear. If all of the data points fall on the
straight line with a slope of 1, the accuracy of the predictive
model is 100%. Figure 10 suggests that the predictive model
trained by RFs can estimate tool wear with reasonably good pre-
diction accuracy.

Figure 11 shows a series of data points (observed and pre-
dicted tool wear data) indexed in time order. In comparison
with Figs. 10 and 11 shows the trend of tool wear over time.
The data points in green represent predicted tool wear. The data
points in red represent observed tool wear. 95% prediction
intervals were also calculated. A prediction interval estimates
an interval within which the predicted tool wear is expected to
lie with a specified probability. The results have shown that the
tool life in milling operations include three stages, including
break-in region with rapid initial wear rate, steady-state wear
region with uniform wear rate, and failure region with acceler-
ating wear rate.

To measure the performance of the predictive model trained by
RFs, several common performance metrics, including mean
squared error (MSE), coefficient of determination (R-squared),
and training time, were used in this study. The MSE is defined as

MSE ¼ ð1=nÞ
Pn

i¼1 ðbYi � YiÞ2 where bYi is a predicted value, Yi is
an observed value, and n is the sample size. The MSE measures
the average of the squares of the errors. The coefficient of deter-

mination is defined as R2 ¼ 1� ðSSE=SSTÞ where SSE is the
sum of the squares of residuals and SST is the total sum of
squares. The coefficient of determination is interpreted as the
proportion of the variance in the dependent variable that can be
predicted from the independent variable. If the R-squared value is
equal to 1, all of the data points fall perfectly on the fitted regres-
sion line. If the R-squared value is equal to 0, the model explains
none of the variability of the response data around its mean. The
R-squared metric provides an indication of the goodness of fit of a
set of predictions to the actual values. Table 3 summarizes theFig. 10 Comparison of observed and predicted tool wear

Fig. 9 Mean decrease in residual sum of squares/variable importance
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MSE, R-squared values, and training time when randomly sam-
pling 50–90% of the total data as training data.

6.3 Performance Evaluation for Cloud-Based Parallel
Random Forests. The MapReduce-based parallel RFs algorithm
was implemented on the Amazon Elastic Compute Cloud
(Amazon EC2). Amazon EC2 is a web service that provides
scalable high performance computing capacity on the Amazon
Web Services cloud. In comparison with traditional clusters or
supercomputers, Amazon EC2 runs instances on its physical infra-
structure using the open-source virtualization middleware Xen.
Various configurations of CPU cores, memory, storage volumes,

and operating systems, also known as instance types, are provided
on the Amazon EC2 cloud platform. In this study, two instance
types were selected to evaluate the performance of the
MapReduce-based parallel RFs. Table 4 summarizes the detailed
hardware configurations of the C3.8 and R3.8 instances. The
C3.8� large instance type has an Intel Xeon E5-2680V2 proces-
sor, 32 virtual cores, 60 GB of memory, and 640 GB of solid state
drive storage. C3 instances are optimized for compute-intensive
applications. The R3.8� large instance type has an Intel Xeon
E5-2670V2 processor, 32 virtual cores, 244 GB of memory, and
640 GB of solid state drive storage. R3 instances are optimized
for memory-intensive applications.

To evaluate the performance of the MapReduce-based parallel
RFs, two performance metrics, including training time and rela-
tive speedup ratio, were used. The time to train a predictive model
varies depending on the amount of training data and computing

Table 3 MSE and R-squared values on test data and training
time

Random forests (10,000 trees)

Training size (%) MSE R2 Training time (s)

50 14.242 0.986 20.876
60 11.466 0.989 26.562
70 10.469 0.990 33.230
80 8.195 0.992 38.995
90 8.295 0.992 45.224

Fig. 12 Training time for C3 instances Fig. 13 Relative speedup ratio for C3 instances

Fig. 11 Tool wear progression with prediction intervals
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capacity. Figure 12 shows the average training time with different
amount of training data and cores. For example, the curve in red
represents the average training time to train the predictive model
with 50% of the total amount of data. Similarly, the curve in pink
shows the average training time to train the predictive model with
90% of the total amount of data. The training times are 21, 28, 34,
40, and 47 s using one core, respectively. As expected, the training
time increases as the training data increase.

In addition, to assess the performance of the MapReduce-based
PRFs, the predictive model was trained with 1, 2, 4, 8, 16, and 32
cores on the different amount of training data. For example, it
took 21, 11, 7, 4, 3, and 2 s to train the predictive model with 1, 2,
4, 8, 16, and 32 cores, respectively, when 50% of the total amount

of data was used for training. It took 47, 25, 13, 8, 5, and 3 s to
train the predictive model with 1, 2, 4, 8, 16, and 32 cores, respec-
tively, when 90% of the total amount of data was used for train-
ing. Relative speedup ratio measures the relationship between the
sequential execution time and the parallel execution time solving
the same problem. Figure 13 shows the relative speedup ratios
when 90% of the total amount of data was used as training data.
The results show that the MapReduce-based PRFs achieved a near
linear speedup for 1–8 cores and a sublinear speedup for 16–32
cores, respectively.

Because the C3 instance is optimized for compute-intensive
applications, the MapReduce-based RPF was also executed on the
R3 instance, which is optimized for memory-intensive applica-
tions. Figure 14 shows the training time. For example, it took 21,
11, 7, 4, 3, and 2 s to train the predictive model with 1, 2, 4, 8, 16,
and 32 cores, respectively, when 50% of the total amount of data
was used for training. It took 44, 23, 12, 7, 4, and 3 s to train the
predictive model with 1, 2, 4, 8, 16, and 32 cores, respectively,
when 90% of the total amount of data was used for training.
Figure 15 shows the relative speedup ratios when 90% of the total
amount of data was used as training data. The results show that
the MapReduce-based PRFs achieved a near linear speedup for
1–8 cores and a sublinear speedup for 16–32 cores, respectively.
The results show that the training time with the R3 instance is
almost the same as that of the C3 instance.

7 Conclusions and Future Work

In this paper, prediction of flank tool wear in high-speed
machining was conducted with RFs and MapReduce-based PRFs
algorithms. The MapReduce-based PRFs algorithm was imple-
mented on the Amazon EC2 cloud. The condition monitoring
data, including cutting force, vibration, and acoustic emission,
collected from 315 milling tests were used to evaluate perform-
ance of the algorithms. A set of statistical features was generated
as the input of the machine learning algorithms. The performance
metrics include MSE, R-squared, and training time. The experi-
mental results have shown that RFs can predict tool wear very
accurately with the condition monitoring data. The importance of
the statistical features can be measured using RFs. In addition, the
prediction intervals associated with tool wear predictions were
computed to measure uncertainty in tool wear prediction. More-
over, the MapReduce-based PRFs algorithm was developed to
increase the efficiency of the original RFs algorithm. The experi-
mental results have shown that a significant increase in training
time (15 times with 32 cores) has been achieved by parallelizing
the original RFs with two Amazon EC2 instances. In the future,
the MapReduce PRFs will be implemented on a cloud with multi-
ple computing nodes to evaluate the scalability of the algorithm.
Efforts will also be focused on evaluating the performance of the
algorithm on large volumes of streaming data from multiple CNC
machines.
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