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Prediction of Material Removal
Rate for Chemical Mechanical
Planarization Using Decision
Tree-Based Ensemble Learning
Chemical mechanical planarization (CMP) has been widely used in the semiconductor
industry to create planar surfaces with a combination of chemical and mechanical forces.
A CMP process is very complex because several chemical and mechanical phenomena
(e.g., surface kinetics, electrochemical interfaces, contact mechanics, stress mechanics,
hydrodynamics, and tribochemistry) are involved. Predicting the material removal rate
(MRR) in a CMP process with sufficient accuracy is essential to achieving uniform sur-
face finish. While physics-based methods have been introduced to predict MRRs, little
research has been reported on monitoring and predictive modeling of the MRR in CMP.
This paper presents a novel decision tree-based ensemble learning algorithm that can
train the predictive model of the MRR. The stacking technique is used to combine three
decision tree-based learning algorithms, including the random forests (RF), gradient
boosting trees (GBT), and extremely randomized trees (ERT), via a meta-regressor. The
proposed method is demonstrated on the data collected from a CMP tool that removes
material from the surface of wafers. Experimental results have shown that the decision
tree-based ensemble learning algorithm using stacking can predict the MRR in the CMP
process with very high accuracy. [DOI: 10.1115/1.4042051]

Keywords: chemical mechanical planarization (CMP), material removal rate (MRR),
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1 Introduction

Chemical mechanical planarization (CMP) was invented in
IBM in the early 1980s by Klaus D. Beyer to create a planar sur-
face and enable subsequent lithographic imaging [1]. Since then
the CMP process has been used to planarize various materials
such as semiconductors, silicon oxide, metal, composites, and
polymers with the combination of mechanical abrasion and chem-
ical erosion [2]. CMP is one of the most important semiconductor
processes, which is critical for producing microprocessors and
memory chips. The global CMP market in 2014 was valued at
$3.32 billion and is estimated to reach $4.94 billion by 2020 [3].
The key factors driving the growth of the CMP market are the
increasing need of CMP for wafer planarization, high demand for
consumer electronic products, and increasing use of micro-
electro-mechanical systems.

A typical CMP tool consists of a rotating table used to carry a
polishing pad, a replaceable polishing pad attached to the rotating
table, a translating and rotating wafer carrier used to carry a wafer,
a slurry dispenser, and a translating and rotating dresser used to
condition the polishing pad. During the CMP process, a wafer is
pressed against the polishing pad while the wafer carrier and a
polishing pad are rotating in the same direction. Chemical slurries
with abrasive particles are deposited onto the polishing pad during
the CMP process. Modern CMP is a very complex process that
involves several chemical and mechanical phenomena such as
machinery kinetics, contact mechanics, hydrodynamics, chemical
etching, and tribochemistry. The performance of the CMP process
is measured using metrics such as material removal rate (MRR),
planarization (e.g., within-wafer uniformity, wafer–wafer uni-
formity, and surface roughness), and process robustness and
stability.

One of the key challenges in CMP is to achieve a high MRR
and low nonuniformity of the polished surface simultaneously.
Fundamental understanding of the material removal mechanism in
CMP is critical to predict and control the quality of polished surfa-
ces. Current methods for predicting the MRR in the CMP process
fall into three categories: physics-based, model-based, and data-
driven methods [3]. One of the most well-known physics-based
models is the Preston equation [4]: MRR ¼ KpPaVb, where P
denotes the downward pressure applied to a wafer, V denotes the
relative rotating speed between the wafer and the polishing pad,
Kp is the Preston coefficient, and a and b are the parameters
depending on operating conditions. According to Krishnan et al.
[1], the MRR of the CMP process is affected by many process var-
iables such as the downward pressure, relative velocity between a
polishing pad and a wafer, slurry flow rate, the usage of dresser,
wafer hardness, pad hardness, pad roughness, and abrasive size.
However, few physics-based and model-based methods are capa-
ble of predicting the MRR with sufficient accuracy by taking into
account these process variables. For example, the limitation of
physics-based methods is that the majority of these methods are
developed based on the original and modified Preston equations
[5–7], which are empirical models. The limitation of model-based
methods is that certain distributions and assumptions made when
developing close-form analytical solution do not always hold true
[8,9]. Recent advances in artificial intelligence and machine learn-
ing enable predictive modeling of the complex CMP process by
analyzing large volumes of condition monitoring data and identi-
fying patterns [10–12]. Therefore, the objective of this study is to
develop an ensemble learning approach to predicting the MRR of
a wafer CMP process using large volumes of real-time condition
monitoring data and a stacking technique.

The remainder of this paper is organized as follows: Section 2
reviews the related work on CMP. Section 3 introduces an ensem-
ble learning-based predictive modeling approach using stacking.
Section 4 presents a case study as well as discusses experimental
results. Section 5 provides conclusions and future work.
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2 Related Work

Over the past decade, a few physics-based models based on the
Preston equation have been introduced to predict the MRR in
CMP. Lin and Wu [13] investigated the effects of relative veloc-
ity, downward pressure, the flow rate of flurry on MRR prediction.
The experimental results have shown that the MRR increases as
the downward pressure and relative velocity increase. The experi-
mental results also suggested that the Preston equation could be
further modified to improve prediction accuracy. Lee and Jeong
[14] introduced a model that estimates the MRR for copper using
a modified Preston equation. Three variables, including normal
contact stress, relative velocity, and chemical reaction rate, were
incorporated into the original Preston equation. Experimental
results have shown that the modified Preston equation can esti-
mate the MRR more accurately. Lee et al. [15] proposed a predic-
tive model for MRR by taking into account the effects of the size,
concentration, distribution of particles, slurry flow rate, polishing
pad surface topography, and chemical reactions. Experimental
results have shown that the estimated MRRs are in good agree-
ment with the experimental data.

In addition to physics-based methods, model-based and data-
driven methods have been introduced to predict MRR for CMP.
Lih et al. [16] introduced a data-driven approach to the prediction
of the MRR for CMP using an adaptive neuro-fuzzy inference sys-
tem. Experimental results have shown that the predictive model
trained by the adaptive neuro-fuzzy inference system outperforms
that of artificial neural networks. Wang et al. [17] introduced a
data-driven approach to the prediction of the MRR for CMP using
a deep belief network. The particle swarm optimization was used
to optimize the deep belief network structure and the learning
rate. Experimental results have shown that an average root-mean-
square error (RMSE) of 2.7 can be achieved. Jia et al. [18] pro-
posed an adaptive method based on polynomial neural networks
to predict the MRR for CMP. Experimental results have shown
that the proposed method outperforms the k-nearest neighbors
(KNN), logistic regression (LR), support vector regression (SVR),
and random forests (RF) in terms of mean squared error (MSE)
and coefficient of determination (R2). Kong et al. [8] introduced a
model-based method that integrates nonlinear Bayesian analysis
and statistical methods to predict MRR, surface finish, and surface
defects. The particle filtering method was used for nonlinear
Bayesian analysis to predict the CMP process performance. A set
of CMP experiments on copper wafers was conducted to collect
vibration signals from a CMP machine. Experimental results have
shown that the predictive model achieved a R2 value of 0.96. Rao
et al. [19] developed a deterministic process–machine interaction
model that can identify complex time–frequency patterns during a
CMP process for polishing copper wafer surfaces. The model was
validated using a CMP machine instrumented with an accelerome-
ter. Experimental results have shown that the model was able to
predict MRR with a coefficient of determination of 0.85.

In summary, while previous research efforts have been focused
on the development of physics-based and model-based predictive
modeling techniques for CMP, these methods can take into
account very few process variables. To address this research gap,
the objective of this study is to develop a data-driven predictive
modeling approach to predicting the MRR of CMP processes
using large volumes of condition monitoring data.

3 Ensemble Learning-Based Predictive Modeling

Ensemble learning is a meta-algorithm that combines multiple
machine learning algorithms (also known as base learners) into
one learning algorithm to improve the performance of predictive
models [20,21]. The base learners can be aggregated to reduce
variance using randomization ensemble [5], to reduce bias using
boosting ensemble [22], or to reduce both variance and bias using
stacking ensemble. In general, the predictive model trained by
ensemble learning outperforms that of individual base learners

[23]. Table 1 lists three ensemble methods, including boosting,
randomization, and stacking. None of these ensemble methods
outperforms other methods consistently. However, some empirical
studies have shown that the stacking method outperforms boosting
and randomization [20]. Therefore, stacking is used to combine
multiple base learners.

Figure 1 illustrates a computational framework of the ensemble
learning-based predictive modeling approach. A training dataset
is used to develop the predictive model. A validation dataset and a
test dataset are used to validate and test the predictive model
trained by the training dataset, respectively. The training, valida-
tion, and test datasets contain raw sensory data. A set of features
in the time and frequency domains is extracted. To reduce the
dimensionality of the features, RF is used to reduce the number of
features based on a measure called variable importance. In the
model training phase, the reduced subset of features is fed into the
decision tree-based ensemble learning algorithm that combines
three base learning algorithms, including RF, gradient boosting
trees (GBT) [22], and extremely randomized trees (ERT) [24]. To
develop a more accurate predictive model while avoiding overfit-
ting, k-fold cross-validation (CV) is conducted to train the base
learners. The outputs of the base learners are fed into another
machine learning algorithm to train a meta-regressor. Two
machine learning algorithms, including extreme learning
machines (ELM) and classification and regression tree (CART),
are used to train the meta-regressor. The output of the meta-
regressor is the final prediction of the ensemble learning-based
predictive modeling method. In the model validation and testing
phases, the validation and test datasets are used to validate the
predictive model.

3.1 Feature Extraction and Selection. In the feature extrac-
tion and selection phase, the raw measurement data were first
transformed into a set of features in the time and frequency
domains. Second, to reduce the dimensionality of the features, a
subset of the original features was selected as input to the ensem-
ble learning algorithm. Feature selection was conducted using RF
based on variable/feature importance. The importance of a vari-
able xi for predicting a response variable Y is evaluated by averag-
ing the sum of the weighted reduction in the residual sum of
squares for all nodes t where xi is used over the number of regres-
sion trees. The importance of a variable is given by

VarImp xið Þ ¼
1

NT

X
T

X
t2T:v stð Þ¼xi

pðtÞDkðst; tÞ (1)

where pðtÞDkðst; tÞ denotes the weighted reduction in residual sum
of squares by splitting an internal node t into two child nodes.
p tð Þ ¼ Nt=N denotes the proportion of the data points/samples at
node t. Nt denotes the number of samples at node t. N denotes the
total number of samples that is drawn to build a regression tree.
NT denotes the total number of regression trees in a random forest.
T denotes a regression tree structure. st denotes a split at node t.
v stð Þ denotes the splitting variable that is selected for the split st.
Dk st; tð Þ ¼ k tð Þ � p1kðt1Þ � p2kðt2Þ. k tð Þ denotes the residual sum
of squares at node t. t1 and t2 denote the two child nodes of node t.

3.2 Base Learning Algorithms. In the model training phase,
the ensemble learning algorithm combines three decision tree-
based learning algorithms, including the RF, GBT, and ERT. The

Table 1 Comparison of different ensemble methods

Ensemble method Objective Ensemble type Aggregation method

Boosting Decrease bias Sequential Average
Randomization Reduce variance Parallel Weighted average
Stacking Both Hybrid Regression
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three decision tree-based learning algorithms are briefly intro-
duced in Secs. 3.2.1–3.2.3.

3.2.1 Random Forests. The RF algorithm [11,25–27] is an
ensemble learning method that builds predictive models by com-
bining multiple decision tree models. Each decision tree model is
trained on a bootstrap sample generated from a training dataset
using bootstrapping aggregating or bagging. Given a training data-
set, bagging generates a set of new training samples by sampling
from the original training dataset with replacement. By sampling
with replacement, some observations may be repeated. However,
bagging can reduce variance and avoid overfitting. In general, a
RF model consists of a few hundred to several thousand decision
trees. In this study, 100 regression trees were constructed. The
second step of random forests is to construct a decision tree using
an individual bootstrap sample. A bootstrap sample is the root
node of an individual decision tree. To construct a decision tree, a
node is split into two child nodes. To split a node, a set of varia-
bles is selected randomly. Selecting a subset of the variables
instead of all of the variables can reduce the correlation of the
decision trees. To determine an optimal split, one variable (also
known as a splitting variable) is selected from a subset of the vari-
ables. The value of the splitting variable is referred to as a cutting
point. In this study, one third of the total number of variables was
selected. The splitting criterion at each node is to solve the follow-
ing objective function:

min
j;s

min
c1

X
xi2R1 j;sð Þ

ðyi � c1Þ2 þmin
c2

X
xi2R2 j;sð Þ

ðyi � c2Þ2
� �

(2)

where j ¼ 1; 2;…; p (p denotes the number of splitting variables.)
s denotes a cutting point. R1 j; sð Þ ¼ XjXj � s

� �
and R2 j; sð Þ ¼

XjXj � s
� �

denote two resulting regions after the best split is
determined. Xj denotes the jth splitting variable. c1 ¼ ave
yijxi�R1 j; sð Þ
� �

denotes the average of the yi’s that fall into the
region R1 j; sð Þ. c2 ¼ ave yijxi�R2 j; sð Þ

� �
denotes the average of the

yi’s that fall into the region R2 j; sð Þ.
The splitting process is repeated until a stopping criterion is sat-

isfied. In this study, the stopping criterion is satisfied when the

number of data points in a node falls below a threshold of five.
After 100 regression trees are constructed, a prediction at a new
point can be made by averaging the predictions from all the
regression trees.

3.2.2 Gradient Boosting Trees. As opposed to bagging, the
GBT algorithm is an ensemble learning algorithm that develops
decision tree-based predictive models sequentially using a boost-
ing method [22]. In the boosting method, instances that are diffi-
cult to predict using the previous base learner appear more often
in the training data than the ones that are correctly predicted. The
key difference between bagging and boosting is that each instance
is uniformly selected in bagging, whereas the probability that
each instance is selected is not equal in boosting. Prediction accu-
racy is improved by assigning greater weights on the instances
that are difficult to predict. The objective of GBT is to find an
approximation to a function that minimizes a certain loss function.
The predictor aims to estimate the response of an arbitrary input
vector x using a mapping function y ¼ f ðxÞ learned from a train-
ing set (yi, xi) (i¼ 1, 2, …, N with N being the total number of
training data). The mapping function f �ð Þ [22,28] is to minimize
the loss function Mðyi; f ðxiÞÞ as follows:

f � ¼ arg min
f

XN

i¼1

Mðyi; f ðxiÞÞ ¼ arg min
f

E½M yi; f xið Þ
� �

� (3)

where E[�] denotes the expectation operation. The loss function
could be the square error or negative binomial log-likelihood. A
boosting model given by Eq. (4) is often used to approximate the
mapping function

f
�
x
�
¼
XM

m¼1

bmhðx; amÞ (4)

where hðx; amÞ (m¼ 1, 2, …, M) is a set of parameterized func-
tions of x, M is the number of functions, bm is a weight coeffi-
cient, and am¼ [a1, a2, …] is a set of parameters that characterize
the inputs in hð�Þ. The greedy-stagewise approach [22] can be

Fig. 1 A predictive modeling framework based on ensemble learning
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used to solve the optimization problem given by Eq. (3). The
parameters bm and am can be approximated by the below
equation:

bm;amð Þ ¼ arg min
b;a

E M yi; fm�1 xið Þ þ bh xi; að Þ
� �� 	

(5)

The boosting model f ðxÞ can be updated by the below equation:

fm xð Þ ¼ fm�1 xð Þ þ bmhðx; amÞ (6)

To solve the optimization problem in Eq. (5), the gradient boost-
ing method adopts a two-step procedure. In the first step, the para-
meterized functions are fit by Eq. (7) along the best greedy step
direction determined by Eq. (8)

am ¼ arg min
a;b

E½ �cm xið Þ � bhðxi; aÞ
� �2� (7)

�cm xið Þ ¼
@E½yi; f xið Þ�
@f xið Þ

" #
f xð Þ¼fm�1 xð Þ

(8)

In the second step, the optimal bm is determined using the below
equation:

bm ¼ arg min
q

E½M yi; fm�1 xið Þ þ bhðxi; amÞ
� �

� (9)

Thus, the mapping function can be updated by the below
equation:

fm xð Þ ¼ fm�1 xð Þ þ bmhðx; amÞ (10)

Equations (2)–(9) briefly introduce the gradient boosting method
in which the parameterized function can be wavelet or radial basis
functions. If the parameterized function h(x; ai) is expressed using
a regression tree, the parameter ai includes the splitting variables,
cut points, and nodes of the individual trees.

3.2.3 Extremely Randomized Trees. The ERT algorithm
builds an ensemble of unpruned decision trees from a complete
learning sample rather than a bootstrap sample [24]. More impor-
tantly, a cut point is selected at random to split a node in ERT
rather than choosing the best cut-point based on a local sample in
RF. The ERT algorithm consists of the following three steps:

� Step 1: Determine three key parameters in an ERT model,
namely, K (the number of randomly selected attributes at
each node), nmin (the minimum sample size for splitting a
node), and M (the number of trees in the ensemble model).

� Step 2: Build a decision tree on the original training data.
The splitting criterion is to choose the best split among the K
attributes that are randomly selected.

� Step 3: Construct an ensemble tree model by aggregating M
totally randomized trees, which are acquired by repeating
step 2 for M times.

3.3 Ensemble Learning Using Stacking. Stacking is a
method that combines multiple classification or regression models
using a meta-classifier or a meta-regressor. An ensemble learning
method using stacking includes two steps: (1) training base learn-
ers and (2) training a meta-regressor. Figure 2 illustrates the two-
layer ensemble learning method using stacking. Pseudocode that
describes the ensemble learning method using stacking can be
found in Table 2.

4 Case Study

In this section, the decision tree-based ensemble learning
method using stacking is demonstrated on the dataset acquired
from the 2016 PHM data challenge [29].

4.1 Data Description. The dataset contains multiple sensory
signals collected from a CMP tool that removes the material from
wafers. The total volume of the dataset is 187 MB.

Figure 3 shows a schematic diagram of the CMP process. The
CMP tool consists of a rotating table, a replaceable polishing pad,
a rotating wafer carrier, a slurry dispenser, and a dresser. A wafer
is placed on the underside of the wafer carrier. During the CMP
process, the wafer is pressed against the polishing pad while the
polishing pad and wafer carrier are rotating in the same direction.
A slurry composed of abrasive materials and chemicals is dis-
pensed onto the polishing pad during the CMP process. The
dresser is composed of a hard material such as diamond that is

Fig. 2 Two-layer ensemble learning using stacking

Table 2 Pseudocode of the ensemble learning algorithm using
stacking

Input: Training dataset S¼ yi; xif gN
i¼1

(xi : Input variable; yi: Response
variable)

1: Train the base learners at layer 1 using S
2: for j¼ 1 to J (J: Number of base learning algorithms)
3: build base learner dj using base learning algorithm j
4: end for

5: Generate new training data R

6: for i¼ 1 to N do
7: Ri¼ yi; zif g, where zi¼ [d1(xi), d1(xi), …, dJ(xi)]
8: end for

9: Build a mega-regressor D using R at layer 2
Output: Predictive model D

Fig. 3 Schematic diagram of the CMP process
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pressed across the polishing pad to roughen the surface of the pol-
ishing pad.

The dataset includes 19 variables. Table 3 lists the description
of these measurement variables and additional six parameters.
The conditions of four CMP tools were monitored during various
runs of the CMP tools for specified wafers. Some variables,
including the usage of the polish-pad backing film, dresser, polish-
ing table, dresser table, polishing membrane, wafer carrier sheet,
and the status of the dressing water, are real-time condition moni-
toring data. Other variables such as the pressure-related variables,
slurry flow rate, the rotating rate of the wafer, stage, and head, are
preset to different values in different tests. The raw data are
divided into three datasets, including one training dataset, one val-
idation dataset, and one test dataset. Table 4 provides more details
on the three datasets. The training data were collected from 1981
wafers in two operational stages: A and B. A total number of
672,744 trajectories were collected from the wafers. These train-
ing trajectories are stored in 185 files in CSV format. The valida-
tion and test datasets include 144,148 and 156,262 trajectories,
respectively. It should be noted that four outliers in the training
dataset under stage A were removed before processing the data
[18,30].

The predictive model was trained on the training dataset, and
then validated on the validation and test datasets. The validation
and test datasets provide an unbiased evaluation of the model fit
on the training dataset.

4.2 Feature Extraction and Selection. The raw data were
transformed into a set of features and then a reduced subset of fea-
tures before being processed by the decision tree-based ensemble
learning algorithm. Four statistical features (see Eqs. (11)–(14)) in
the time domain, including the standard deviation, central
moment, skewness, and kurtosis, were extracted from each sensor
signal. In addition, other three features in the frequency domain,
including the maximum frequency amplitude, frequency center,
and kurtosis of frequencies, were extracted from the measurement
variables x21, x22, and x23. Eighty-five (85) features in total were
extracted from the raw data

standard deviation r xð Þ ¼ E½x� l�1=2
(11)

central moment mp xð Þ ¼ E½x� l�p (12)

skewness s xð Þ ¼ E½x� l�3=r3 (13)

kurtosis k xð Þ ¼ E½x� l�4=r4 (14)

where E[�] denotes the expectation operation, l is the mean value
of x, and p is the order of moment. In this study, the central
moment of order 3 is used (p ¼ 3).

To avoid overfitting and reduce training time, a subset of the
extracted 85 features was selected for use in model development.
A feature selection algorithm can be considered as a search tech-
nique that evaluates the importance of individual features. As
shown in Fig. 4, RF was used to measure the importance of each
feature. When the threshold value is set equal to 0.65, the top five
most important features include (1) the standard deviation of the
slurry flow rate, (2) the standard deviation of the usage of the
polish-pad backing film, (3) the skewness of the downward pres-
sure, (4) the central moment of the usage of the polishing table,
and (5) the central moment of the usage of the wafer carrier sheet.
The ranking of the variable importance makes sense from a
physics point of view. For example, the slurry flow rate has a sig-
nificant impact on the amount of active abrasives in the CMP pro-
cess, thereby affecting the MRR significantly. The usage of
polishing-pad backing film and wafer carrier sheet has an impact
on the local contact pressure between the polishing pad and the
wafer, thereby affecting the MRR [31,32]. The downward pres-
sure has an impact on the MRR according to the Preston equation.
The usage of the polishing table has an impact on pad wear, which
dynamically changes the pad surface topology in the CMP pro-
cess, thereby affecting the MRR.

The number of selected features was determined by balancing
the trade-off between prediction accuracy and training time. Pre-
diction accuracy is measured using R-square (R2), RMSE, relative
error (RE), and score function (S-score) (see Eqs. (15)–(18)).
RMSE and RE measure the deviations between the predicted and
actual MRRs. R2 measures the goodness of fit of a predictive
model. An S-score, initially introduced in 2008 PHM data chal-
lenge, measures the performance of a model by taking into
account whether the model overestimates and underestimates the
MRR

RMSE eRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðŷ � yÞ2�

q
(15)

RE eRPEi ¼ ŷi � yij j=yi (16)

Table 3 Data description

Symbol Description Symbol Description

x1 Machine ID x14 Pressure applied to the retainer ring
x2 Wafer ring location ID x15 Pressure applied to the ripple air bag
x3 Time (s) x16 Usage of polishing membrane
x4 Wafer ID x17 Usage of wafer carrier sheet
x5 Stage ID (A or B) x18 Flow rate of slurry type A
x6 Chamber ID x19 Flow rate of slurry type B
x7 Usage of polish-pad backing film x20 Flow rate of slurry type C
x8 Usage of dresser x21 Rotating rate of wafer
x9 Usage of polishing table x22 Rotating rate of stage
x10 Usage of dresser table x23 Rotating rate of head
x11 Chamber pressure x24 Status of dressing water
x12 Pressure applied to the main outer air bag x25 Pressure applied to the edge air bag
x13 Pressure applied to the center air bag

Table 4 Training, validation, and test datasets

2016 PHM CMP datasets

Information Training Validation Test

Total number of observations 672,744 144,148 156,262
Number of wafers 1,981 424 424
Number of wafers under stage A 1,166 252 238
Number of observations under stage A 376,859 82,984 91,798
Number of wafers under stage B 815 172 186
Number of observations under stage B 295,885 61,164 64,464
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S-score eCVi ¼
exp �di=13ð Þ; di < 0

exp di=10ð Þ; di � 0
; di ¼ ŷi � yið Þ

�
(17)

R-square R2ð Þ

eR2 ¼ 1� SR=ST

SR ¼
X

i

ŷi � �yT

ST ¼
X

i

ŷi � yT
i

8>>>>><
>>>>>:

(18)

where i¼ 1, 2, …, N (N is the sample number), yi is the actual
MRR of the ith sample, ŷi is the predicted MRR of the ith sample,
ŷ is the matrix form of all the predicted MRRs, and �y is the mean
value of the actual MRR vector y. To determine an optimal num-
ber of features, GBT, RF, and ERT were used to train predictive
models using 5, 20, 35, 50, 65, and 85 features. The parameter set-
tings for the three base learners are listed in Table 5. These deci-
sion tree-based learning algorithms were used to train predictive
models using the training dataset. The validation dataset was used
to evaluate the performance of the predictive models. All the com-
putational experiments were conducted on a computer with Intel
Core i7-6650 U CPU at 2.2 GHz and 16 GB of memory in the
Windows 10 environment. To take into account computational
uncertainty, we replicate a computational experiment for 20
times.

Figure 5 shows the average of R2, RE, S-score, RMSE, and
training time versus a varying number of features. As shown in
Fig. 5(a), R2 increases as the number of features increases for both
GBT and RF. R2 decreases as the number of features exceeds 50
for ERT. As shown in Fig. 5(b), RE decreases as the number of
features increases for both GBT and RF. RE increases as the num-
ber of features exceeds 35 for ERT. As shown in Fig. 5(c),
S-score decreases as the number of features increases for both
GBT and RF. S-score increases as the number of features
increases for ERT. As shown in Fig. 5(d), RMSE decreases as the

number of features increases for both GBT and RF. RMSE
increases as the number of features exceeds 35 for ERT. As shown
in Fig. 5(e), training time almost does not vary with the number of
features for both GBT and RF. However, training time increases
as the number of features increases for ERT. By balancing the
trade-off between prediction accuracy (i.e., R2, RE, S-score,
RMSE) and computational efficiency (i.e., training time), the opti-
mal number of features is 35, which takes nearly minimum train-
ing time while achieving sufficient prediction accuracy. In
addition to the average values of R2, RE, S-score, RMSE, and
training time, the variability of these performance measures are
also calculated. Figure 6 shows a boxplot indicating the variability
of RMSEs with regard to GBT, RF, and ERT algorithms using a
varying number of features. The boxplot shows the median, mini-
mum, and maximum RMSEs of 20 replications. As shown in Fig.
6, the variability of RMSEs is relatively small.

Figures 7–9 show the prediction performance on the validation
dataset using the GBT, RF, and ERT methods and 35 features,
respectively. For example, Fig. 7(a) shows the comparison
between the predicted MRR and the actual MRR (i.e., the ground-
truth MRR) in order of wafer index with regard to the GBT
method. Figure 7(b) shows the comparison between the predicted
MRR and the actual MRR (i.e., the ground-truth MRR) in order of
MRR. The average R2 is 0.917. Figure 7(c) shows the distribution
of the residuals (i.e., the difference between the predicted
and actual MRR). The standard deviation of the residuals is
8.317 nm/min. Similarly, Figs. 8(a) and 8(b) show the comparison
between the predicted MRR and the actual MRR for the RF
method. The average R2 is 0.917. Figure 8(c) shows the standard
deviation of the residues as 8.291 nm/min. Figures 9(a) and 9(b)
show the comparison between the predicted MRR and the actual
MRR for the ERT method. The average R2 is 0.919. Figure 9(c)
shows the standard deviation of the residues as 8.236 nm/min.

Figures 10–12 show the prediction performance on the valida-
tion dataset using the GBT, RF, and ERT methods and 85 fea-
tures, respectively. For example, Fig. 10(a) shows the comparison
between the predicted MRR and the actual MRR in order of wafer
index for the GBT method. Figure 10(b) shows the comparison
between the predicted MRR and the actual MRR in order of
MRR. The average R2 is 0.942. Figure 10(c) shows the standard
deviation of the residuals is 6.909 nm/min. Figures 11(a) and
11(b) show the comparison between the predicted MRR and the
actual MRR for the RF method. The average R2 is 0.916. Figure
11(c) shows the standard deviation of the residues as
8.295 nm/min. Figures 12(a)–12(c) show the results for the ERT
method. The average R2 is 0.767. The standard deviation of the

Fig. 4 Variable importance of the extracted 85 features

Table 5 Parameter settings for the base learning algorithms

Base learner Parameters

GBT Number of trees¼ 100 and Number of leaves for each tree¼ 30
RF Number of trees¼ 100
ERT Number of trees¼ 100, Number of attributes at each

node¼ 3 and Minimum sample size¼ 3
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residues is 13.985 nm/min. The average R2 and standard deviation
of the predicted MRR using 35 features are comparable with those
using 85 features. However, the amount of time spent training the
predictive model using 35 features (180.998 s) is much shorter
than that of 85 features (394.297 s).

4.3 Prediction Results Using Ensemble Learning. The data
points in the training dataset were transformed into 35 features,
and then fed into the decision tree-based ensemble learning algo-
rithm as input. The predictive models trained by the ensemble
learning methods were validated on the validation and test
datasets.

Table 6 lists the R2, RE, S-score, RMSE values for CART-
based stacking and ELM-based stacking methods. The experimen-
tal results have shown that the decision tree-based ensemble
learning methods using CART and ELM as stacking methods out-
perform the base learners. For the validation dataset, the ensemble
learning method using CART outperforms the ensemble learning
method using ELM in terms of R2, RE, S-score, and RMSE. For
the test dataset, the ensemble learning method using CART still

Fig. 5 Prediction performance versus a varying number of features: (a) R2, (b) RE, (c) S-
score, (d) RMSE, and (e) training time

Fig. 6 Variability of RMSE for GBT, RF, and ERT algorithms

Fig. 7 Prediction performance on the validation dataset using GBT and 35 features
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outperforms the ensemble learning method using ELM in terms of
R2, S-score, and RMSE. However, the ensemble learning method
using ELM outperforms the ensemble learning method using
CART slightly in terms of RE.

Figure 13 shows a comparison between the CART- and ELM-
based ensemble learning methods for the cases where 5, 20, 35,
50, 65, and 85 features were selected. Selecting 35 features
achieves near-optimal performance in terms of R2, RE, S-score,
RMSE for the validation and test datasets. The result of this com-
parative study is consistent with that of the comparative study
where the performance of GBT, RF, and ERT were compared
using different number of features.

4.4 Accuracy Improvement With Stage Information. The
CMP data were collected under two different stages: stages A and
B [30]. Figures 14 and 15 show the prediction results by taking

into account the stage information. As shown in Fig. 14, the stand-
ard deviation of the residuals for stage A using the CART- and
ELM-based stacking methods is 3.994 nm/min and 4.215 nm/min,
respectively. As shown in Fig. 15, the standard deviation of the
residues for stage B using the CART- and ELM-based stacking
methods is 4.088 nm/min and 4.417 nm/min, respectively.

Table 7 provides more details on the performance of the predic-
tive models trained on the validation and test datasets for stage A
using the GBT, RF, ERT, CART-, and ELM-based ensemble
learning methods. The ensemble learning methods using CART
and ELM outperform the base learners in terms of R2, RE,
S-score, RMSE for both validation and test datasets. CART-based
stacking outperforms ELM-based stacking for the validation data-
set. However, ELM-based stacking outperforms CART-based
stacking for the test dataset.

Table 8 provides more details on the performance of the predic-
tive models trained on the validation and test datasets for stage B

Fig. 8 Prediction performance on the validation dataset using RF and 35 features

Fig. 9 Prediction performance on the validation dataset using ERT and 35 features
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using the GBT, RF, ERT, CART-, and ELM-based ensemble
learning methods. Similar to stage A, the ensemble learning meth-
ods using CART and ELM outperform the base learners in terms
of R2, RE, S-score, RMSE for both validation and test datasets.
CART-based stacking outperforms ELM-based stacking for the
validation dataset. However, ELM-based stacking outperforms
CART-based stacking for the test dataset.

4.5 Discussions

4.5.1 Prediction Accuracy and Computational Efficiency.
Although the training process in this study is off-line, the method
we developed could be applied for online process monitoring
where the predictive model of the MRR has to be retrained when
some of the dominant operating parameters change significantly.
Online monitoring requires effective and computationally efficient
algorithms. In addition, while only several CMP tools were moni-
tored in this study, large volumes of real-time condition

monitoring data will be generated when hundreds of CMP tools
are monitored in real time. In this case, it is important to evaluate
both prediction accuracy and computational efficiency of the pro-
posed algorithm. Moreover, prediction accuracy after reducing the
dimensionality of the feature space will also be discussed.

It should be noted that the prediction accuracy is affected by
the number of trees in the base learners. To evaluate the effect of
the number of trees, a comparative study was conducted using dif-
ferent number of trees. Tables 9–11 summarize the errors of the
predictive models trained by GBT, RF, and ERT and training time
using 50, 100, 200, 400, and 800 trees, respectively. As shown in
Table 9, R2 and RE values do not vary significantly with the num-
ber of trees for GBT. RMSE and S-score values vary with the
number of trees. For example, the RMSE is 6.815 for the predic-
tive model trained by 100 trees, while the RMSE is 7.350 for the
predictive model training by 50 trees. The S-score value is 0.953
for the predictive model trained by 100 trees, while the S-score
value is 2.067 for the predictive model trained by 50 trees. When

Fig. 10 Prediction performance on the validation dataset using GBT and 85 features

Fig. 11 Prediction performance on the validation dataset using RF and 85 features
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the number of trees exceeds 100, the accuracy of the predictive
models does not significantly improve. However, as shown in Fig.
16(a), the training time increases significantly with the number of
trees. For example, the training times are 36.910, 132.598,
216.609, 468.120, and 973.425 s for 50, 100, 200, 400, and 800
trees, respectively.

Similarly, as shown in Table 10, R2 and RE values do not vary
significantly with the number of trees for RF. RMSE and S-score
values vary with the number of trees. For example, the RMSE is
7.969 for the predictive model trained by 100 trees, while the
RMSE is 8.218 for the predictive model training by 50 trees. The
S-score value is 2.297 for the predictive model trained by 100
trees, while the S-score value is 2.568 for the predictive model
trained by 50 trees. When the number of trees exceeds 100, the
accuracy of the predictive models does not significantly improve.
However, the training time increases significantly with the num-
ber of trees. For example, the training times are 5.490, 7.583,

Table 6 Prediction performance of the ensemble learning algo-
rithm for the validation and test datasets

Prediction performance

Dataset Method R2 RMSE RE S-score

Validation dataset GBT 0.917 8.323 0.062 3.915
RF 0.917 8.066 0.063 2.476

ERT 0.919 7.571 0.064 5.521
CART-stacking 0.937 6.926 0.052 1.318
ELM-stacking 0.905 7.222 0.057 3.452

Test dataset GBT 0.919 8.252 0.058 2.224
RF 0.918 8.572 0.063 6.876

ERT 0.939 7.336 0.055 1.723
CART-stacking 0.941 7.009 0.056 1.034
ELM-stacking 0.940 7.261 0.054 2.051

Fig. 13 Stacked ensemble results using different number of features: (a) R2, (b) RE, (c) S-score, and (d)
RMSE

Fig. 12 Prediction performance on the validation dataset using ERT and 85 features

031003-10 / Vol. 141, MARCH 2019 Transactions of the ASME

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 01/17/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Fig. 14 Prediction performance for the validation dataset in stage A using the stacked ensemble: ((a)
and (b)) stacking-CART and ((c) and (d)) stacking-ELM

Fig. 15 Prediction results for the validation dataset in stage B using the stacked ensemble: ((a) and (b))
stacking-CART and ((c) and (d)) stacking-ELM

Table 7 Performance of the predictive model for stage A

Prediction performance

Dataset Method R2 RMSE RE S-score

Validation dataset GBT 0.977 5.415 0.043 0.500
RF 0.976 5.514 0.045 0.511

ERT 0.973 5.920 0.046 0.564
CART-stacking 0.987 3.987 0.035 0.335
ELM-stacking 0.986 4.208 0.037 0.370

Test dataset GBT 0.970 6.552 0.051 1.674
RF 0.981 5.395 0.046 0.512

ERT 0.966 7.048 0.050 3.723
CART-stacking 0.983 5.065 0.047 0.479
ELM-stacking 0.984 4.795 0.043 0.446

Table 8 Performance of the predictive model for stage B

Prediction performance

Dataset Method R2 RMSE RE S-score

Validation dataset GBT 0.721 5.032 0.052 0.493
RF 0.734 5.059 0.051 0.490

ERT 0.763 4.947 0.051 0.487
CART-stacking 0.826 4.082 0.041 0.370
ELM-stacking 0.788 4.405 0.047 0.410

Test dataset GBT 0.687 4.781 0.047 0.440
RF 0.722 4.598 0.045 0.419

ERT 0.701 4.792 0.048 0.444
CART-stacking 0.725 4.500 0.044 0.404
ELM-stacking 0.727 4.485 0.044 0.404
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Table 9 Prediction performance of GBT using different number of trees

Number of trees

Number of features Error 50 100 200 400 800

85 R2 0.935 0.944 0.942 0.944 0.943
RMSE 7.350 6.815 6.943 6.796 6.880

RE 0.059 0.057 0.058 0.057 0.057
S-score 2.067 0.953 1.105 1.050 1.064

Training time (s) 36.910 132.598 216.609 468.120 973.425

35 R2 0.916 0.919 0.917 0.909 0.908
RMSE 8.340 8.213 8.329 8.701 8.763

RE 0.062 0.062 0.062 0.064 0.064
S-score 3.583 2.826 4.473 3.767 3.789

Training time (s) 27.331 66.064 164.849 344.392 792.356

Fig. 16 Training time of base learners using different number of trees

Table 10 Prediction performance of RF using different number of trees

Number of trees

Number of features Error 50 100 200 400 800

85 R2 0.919 0.924 0.922 0.920 0.923
RMSE 8.218 7.969 8.095 8.167 8.028

RE 0.065 0.064 0.064 0.064 0.064
S-score 2.568 2.297 2.230 2.319 2.272

Training time (s) 5.490 7.791 16.190 36.636 77.130

35 R2 0.917 0.921 0.921 0.925 0.9210
RMSE 8.309 8.086 8.076 7.884 8.1007

RE 0.063 0.062 0.062 0.062 0.0624
S-score 2.725 2.816 2.599 2.316 2.6722

Training time (s) 1.718 3.952 6.596 13.844 28.106

Table 11 Prediction performance of ERT using different number of trees

Number of trees

Number of features Error 50 100 200 400 800

85 R2 0.882 0.868 0.872 0.850 0.831
RMSE 9.992 10.542 10.394 11.193 11.851

RE 0.083 0.084 0.083 0.085 0.087
S-score 3.197 9.687 8.926 23.399 26.319

Training time (s) 96.901 253.908 616.882 1077.117 2207.526

35 R2 0.914 0.901 0.902 0.892 0.884
RMSE 8.485 9.056 9.022 9.480 9.817

RE 0.067 0.069 0.067 0.069 0.070
S-score 2.552 9.240 9.103 10.269 14.216

Training time (s) 51.296 110.982 230.290 701.165 1876.672
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16.190, 36.636, and 77.130 s for 50, 100, 200, 400, and 800 trees,
respectively. In comparison with GBT, RF is more computation-
ally efficient.

Similar to GBT and RF, R2 and RE values do not vary signifi-
cantly with the number of trees for ERT as shown in Table 11.
RMSE and S-score values increase with the number of trees. For
example, the RMSE is 10.542 for the predictive model trained by
100 trees, while the RMSE is 9.992 for the predictive model train-
ing by 50 trees. The S-score value is 9.687 for the predictive
model trained by 100 trees, while the S-score value is 3.197 for
the predictive model trained by 50 trees. The training time
increases significantly with the number of trees. For example, the
training times are 96.901, 253.908, 616.882, 1077.117, and
2207.526 s for 50, 100, 200, 400, and 800 trees, respectively.

As shown in Tables 9–11, the prediction accuracy of GBT, RF,
and ERT is comparable. However, RF is the most computationally
efficient, while ERT is the least computationally efficient as shown
in Fig. 16. To predict the MRR with sufficient accuracy while
maintaining sufficient computational efficiency, the number of trees
and number of features were set to 100 and 35, respectively.

To compare the performance of the proposed ensemble
learning-based predictive modeling approach with some of the
well-known models, a comparative study was conducted. Table
12 shows a comparison of four approaches, including Preston’s
equation, Luo–Dornfeld model, CART-based and ELM-based
ensemble learning algorithms. Both CART-based and ELM-based
ensemble learning algorithms outperform the Preston’s equation
and Luo–Dornfeld model significantly.

4.5.2 Meta-Regressor Selection. In addition to the number of
trees, the selection of the meta-regressor also affects prediction
accuracy. In this section, the performance of CART-based and
ELM-based meta-regressors is compared with several other

meta-regressors, including linear regression (LR) [33], Bayesian
logistic regression (BLR) [34], SVR [35], and AdaBoost [36].

Table 13 summarizes the comparison of the results. The
CART-based stacking method outperforms other stacking meth-
ods for the validation dataset in terms of RMSE. The ELM-based
stacking method outperforms other stacking methods for the test
dataset in terms of RMSE. The training times for the LR-, BLR-,
AdaBoost-, SVR-, CART- and ELM-based stacking methods are
0.783, 44.734, 38.943, 84.763, 0.002, and 0.580 s, respectively.
Among all of these meta-regressors, the CART- and ELM-based
stacking methods are the most computational efficient based on
the training time.

5 Conclusions and Future Work

This paper has presented an ensemble learning-based prognos-
tic approach to predicting the MRR in the CMP process. A two-
layer stacking ensemble learning technique was used to combine
three decision tree-based machine learning algorithms, including
GBT, RF and ERT. RF was also used to select the most important
features. Two stacking techniques were used to combine RF,
GBT, and ERT. This new method was demonstrated on the data-
sets acquired from the 2016 PHM data challenge. The predictive
model was developed on a training dataset, and then was validated
on the validation and test datasets. The performance metrics
include R2, RE, S-score, RMSE, and training time. The experi-
mental results have shown that the decision tree-based ensemble
learning approach predicts the MRR of the CMP process with suf-
ficient accuracy and reasonable training time. In addition, the
ensemble learning algorithm outperformed the base learners (i.e.,
RF, GBT, and ERT). In the future, the training process of the
ensemble learning-based prognostics approach will be parallelized
to improve the computation efficiency.
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Table 13 Comparison of the RMSE using different mega-regressors

LR-stacking BLR-stacking AdaBoost-stacking SVR-stacking CART-stacking ELM-stacking

Validation dataset Stage A 4.892 5.247 4.181 4.714 3.987 4.208
Stage B 4.513 4.506 4.707 4.681 4.082 4.405
Average 4.703 4.877 4.444 4.698 4.035 4.307

Test dataset Stage A 5.863 6.521 5.367 5.209 5.065 4.795
Stage B 4.794 4.667 4.548 4.579 4.500 4.485
Average 5.329 5.594 4.958 4.894 4.783 4.640

Regressor training time 0.783 44.734 38.943 84.763 0.002 0.580

Appendix: Description of the 35 Features Used in This Study (F 5 [F1, F2,. . ., F35])

Feature Description Feature Description Feature Description

F1 Central moment of x7 F13 Skewness of x14 F25 Standard deviation of x14

F2 Central moment of x9 F14 Skewness of x15 F26 Standard deviation of x16

F3 Central moment of x10 F15 Skewness of x16 F27 Standard deviation of x19

F4 Central moment of x15 F16 Skewness of x19 F28 Standard deviation of x21

F5 Central moment of x17 F17 Skewness of x20 F29 Standard deviation of x25

F6 Central moment of x18 F18 Skewness of x25 F30 Kurtosis of x7

F7 Central moment of x23 F19 Standard deviation of x7 F31 Kurtosis of x12

F8 Central moment of x25 F20 Standard deviation of x8 F32 Kurtosis of x22

F9 Skewness of x7 F21 Standard deviation of x9 F33 Kurtosis of x23

F10 Skewness of x8 F22 Standard deviation of x10 F34 Kurtosis of x24

F11 Skewness of x10 F23 Standard deviation of x11 F35 Kurtosis of x25

F12 Skewness of x12 F24 Standard deviation of x12

Table 12 Comparison of the RMSE on the test dataset

Preston’s
equation [18,30]

Luo–Dornfeld
model [18,30]

CART-
stacking

ELM-
stacking

Stage A 42.3 7.6 5.065 4.795
Stage B 16.6 NA 4.500 4.485
Average 29.5 7.6 4.783 4.640

Journal of Manufacturing Science and Engineering MARCH 2019, Vol. 141 / 031003-13

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 01/17/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



References

[1] Krishnan, M., Nalaskowski, J. W., and Cook, L. M., 2009, “Chemical Mechani-
cal Planarization: Slurry Chemistry, Materials, and Mechanisms,” Chem. Rev.,
110(1), pp. 178–204.

[2] Steigerwald, J. M., Murarka, S. P., and Gutmann, R. J., 2008, Chemical
Mechanical Planarization of Microelectronic Materials, Wiley, New York.

[3] Nanz, G., and Camilletti, L. E., 1995, “Modeling of Chemical-Mechanical Pol-
ishing: A Review,” IEEE Trans. Semicond. Manuf., 8(4), pp. 382–389.

[4] Evans, C., Paul, E., Dornfeld, D., Lucca, D., Byrne, G., Tricard, M., Klocke, F.,
Dambon, O., and Mullany, B., 2003, “Material Removal Mechanisms in Lap-
ping and Polishing,” CIRP Ann.-Manuf. Technol., 52(2), pp. 611–633.

[5] Luo, Q., Ramarajan, S., and Babu, S., 1998, “Modification of the Preston Equa-
tion for the Chemical–Mechanical Polishing of Copper,” Thin Solid Films,
335(1–2), pp. 160–167.

[6] Luo, J., and Dornfeld, D. A., 2001, “Material Removal Mechanism in Chemical
Mechanical Polishing: Theory and Modeling,” IEEE Trans. Semicond. Manuf.,
14(2), pp. 112–133.

[7] Yu, T., Asplund, D. T., Bastawros, A. F., and Chandra, A., 2016, “Performance and
Modeling of Paired Polishing Process,” Int. J. Mach. Tools Manuf., 109, pp. 49–57.

[8] Kong, Z., Oztekin, A., Beyca, O. F., Phatak, U., Bukkapatnam, S. T., and
Komanduri, R., 2010, “Process Performance Prediction for Chemical Mechani-
cal Planarization (CMP) by Integration of Nonlinear Bayesian Analysis and
Statistical Modeling,” IEEE Trans. Semicond. Manuf., 23(2), pp. 316–327.

[9] Rao, P. K., Beyca, O. F., Kong, Z., Bukkapatnam, S. T., Case, K. E., and
Komanduri, R., 2015, “A Graph-Theoretic Approach for Quantification of Sur-
face Morphology Variation and Its Application to Chemical Mechanical Plana-
rization Process,” IIE Trans., 47(10), pp. 1088–1111.

[10] Wang, J., Ma, Y., Zhang, L., Gao, R. X., and Wu, D., 2018, “Deep Learning for
Smart Manufacturing: Methods and Applications,” J. Manuf. Syst., 48(C), pp.
144–156.

[11] Wu, D., Jennings, C., Terpenny, J., Gao, R. X., and Kumara, S., 2017, “A Com-
parative Study on Machine Learning Algorithms for Smart Manufacturing:
Tool Wear Prediction Using Random Forests,” ASME J. Manuf. Sci. Eng.,
139(7), p. 071018.

[12] Wu, D., Jennings, C., Terpenny, J., Kumara, S., and Gao, R. X., 2018, “Cloud-
Based Parallel Machine Learning for Tool Wear Prediction,” ASME J. Manuf.
Sci. Eng., 140(4), p. 041005.

[13] Lin, S.-C., and Wu, M.-L., 2002, “A Study of the Effects of Polishing Parame-
ters on Material Removal Rate and Non-Uniformity,” Int. J. Mach. Tools
Manuf., 42(1), pp. 99–103.

[14] Lee, H., and Jeong, H., 2011, “A Wafer-Scale Material Removal Rate Profile
Model for Copper Chemical Mechanical Planarization,” Int. J. Mach. Tools
Manuf., 51(5), pp. 395–403.

[15] Lee, H., Jeong, H., and Dornfeld, D., 2013, “Semi-Empirical Material Removal
Rate Distribution Model for SiO2 Chemical Mechanical Polishing (CMP) Proc-
esses,” Precis. Eng., 37(2), pp. 483–490.

[16] Lih, W.-C., Bukkapatnam, S. T., Rao, P., Chandrasekharan, N., and Komanduri,
R., 2008, “Adaptive Neuro-Fuzzy Inference System Modeling of MRR and
WIWNU in CMP Process With Sparse Experimental Data,” IEEE Trans.
Autom. Sci. Eng., 5(1), pp. 71–83.

[17] Wang, P., Gao, R. X., and Yan, R., 2017, “A Deep Learning-Based Approach
to Material Removal Rate Prediction in Polishing,” CIRP Ann., 66(1),
pp. 429–432.

[18] Jia, X., Di, Y., Feng, J., Yang, Q., Dai, H., and Lee, J., 2018, “Adaptive Virtual
Metrology for Semiconductor Chemical Mechanical Planarization Process
Using GMDH-Type Polynomial Neural Networks,” J. Process Control, 62,
pp. 44–54.

[19] Rao, P. K., Bhushan, M. B., Bukkapatnam, S. T., Kong, Z., Byalal, S., Beyca,
O. F., Fields, A., and Komanduri, R., 2014, “Process-Machine Interaction
(PMI) Modeling and Monitoring of Chemical Mechanical Planarization (CMP)
Process Using Wireless Vibration Sensors,” IEEE Trans. Semicond. Manuf.,
27(1), pp. 1–15.

[20] D�zeroski, S., and �Zenko, B., 2004, “Is Combining Classifiers With Stacking
Better Than Selecting the Best One?,” Mach. Learn., 54(3), pp. 255–273.

[21] Zhou, Z.-H., 2012, Ensemble Methods: Foundations and Algorithms, Chapman
& Hall, Boca Raton, FL.

[22] Friedman, J. H., 2001, “Greedy Function Approximation: A Gradient Boosting
Machine,” Ann. Stat., 29(5), pp. 1189–1232.

[23] Li, Z., Wu, D., Hu, C., and Terpenny, J., 2017, “An Ensemble Learning-Based
Prognostic Approach With Degradation-Dependent Weights for Remaining
Useful Life Prediction,” Reliab. Eng. Syst. Saf., (in Press).

[24] Geurts, P., Ernst, D., and Wehenkel, L., 2006, “Extremely Randomized Trees,”
Mach. Learn., 63(1), pp. 3–42.

[25] Breiman, L., 2001, “Random Forests,” Mach. Learn., 45(1), pp. 5–32.
[26] Liaw, A., and Wiener, M., 2002, “Classification and Regression by random

Forest,” R News, 2(3), pp. 18–22.
[27] Ho, T. K., 1998, “The Random Subspace Method for Constructing Decision

Forests,” IEEE Trans. Pattern Anal. Mach. Intell., 20(8), pp. 832–844.
[28] Friedman, J. H., 2002, “Stochastic Gradient Boosting,” Comput. Stat. Data

Anal., 38(4), pp. 367–378.
[29] Rosca, N. P. J., 2016, “PHM Society Data Challenge,” PHM Society, Denver,

CO, accessed Nov. 30, 2018, https://www.phmsociety.org/events/conference/
phm/16/data-challenge

[30] Ki Bum, L., and Ouk Kim, C., 2018, “Recurrent Feature-Incorporated Convolu-
tional Neural Network for Virtual Metrology of the Chemical Mechanical Pla-
narization Process,” J. Intell. Manuf., pp. 1–14.

[31] Greenwood, J., and Williamson, J. P., 1966, “Contact of Nominally Flat
Surfaces,” Proc. R. Soc. London, A, 295(1442), pp. 300–319.

[32] Johnson, K. L., 1987, Contact Mechanics, Cambridge University Press, Cam-
bridge, UK.

[33] Seber, G. A., and Lee, A. J., 2012, Linear Regression Analysis, Wiley, Hobo-
ken, NJ.

[34] Makalic, E., and Schmidt, D. F., 2016, “High-Dimensional Bayesian Regular-
ised Regression With the BayesReg Package,” preprint arXiv:1611.06649.

[35] Kang, P., Kim, D., and Cho, S., 2016, “Semi-Supervised Support Vector
Regression Based on Self-Training With Label Uncertainty: An Application to
Virtual Metrology in Semiconductor Manufacturing,” Expert Syst. Appl., 51,
pp. 85–106.

[36] Solomatine, D. P., and Shrestha, D. L., 2004, “AdaBoost.RT: A Boosting Algo-
rithm for Regression Problems,” IEEE International Joint Conference on Neural
Networks, Budapest, Hungary, July 23–29, pp. 1163–1168.

031003-14 / Vol. 141, MARCH 2019 Transactions of the ASME

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 01/17/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1021/cr900170z
http://dx.doi.org/10.1109/66.475179
http://dx.doi.org/10.1016/S0007-8506(07)60207-8
http://dx.doi.org/10.1016/S0040-6090(98)00896-7
http://dx.doi.org/10.1109/66.920723
http://dx.doi.org/10.1016/j.ijmachtools.2016.07.003
http://dx.doi.org/10.1109/TSM.2010.2046110
http://dx.doi.org/10.1080/0740817X.2014.1001927
http://dx.doi.org/10.1016/j.jmsy.2018.01.003
http://dx.doi.org/10.1115/1.4036350
http://dx.doi.org/10.1115/1.4038002
http://dx.doi.org/10.1115/1.4038002
http://dx.doi.org/10.1016/S0890-6955(01)00089-X
http://dx.doi.org/10.1016/S0890-6955(01)00089-X
http://dx.doi.org/10.1016/j.ijmachtools.2011.01.007
http://dx.doi.org/10.1016/j.ijmachtools.2011.01.007
http://dx.doi.org/10.1016/j.precisioneng.2012.12.006
http://dx.doi.org/10.1109/TASE.2007.911683
http://dx.doi.org/10.1109/TASE.2007.911683
http://dx.doi.org/10.1016/j.cirp.2017.04.013
http://dx.doi.org/10.1016/j.jprocont.2017.12.004
http://dx.doi.org/10.1109/TSM.2013.2293095
http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/j.ress.2017.12.016
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1023/A:1010933404324
https://www.r-project.org/doc/Rnews/Rnews_2002-3.pdf
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
https://www.phmsociety.org/events/conference/phm/16/data-challenge
https://www.phmsociety.org/events/conference/phm/16/data-challenge
https://link.springer.com/article/10.1007/s10845-018-1437-4
http://dx.doi.org/10.1098/rspa.1966.0242
https://arxiv.org/abs/1611.06649
http://dx.doi.org/10.1016/j.eswa.2015.12.027
http://dx.doi.org/10.1109/IJCNN.2004.1380102

	s1
	aff1
	l
	s2
	s3
	s3A
	FD1
	s3B
	1
	s3B1
	FD2
	s3B2
	FD3
	FD4
	1
	FD5
	FD6
	FD7
	FD8
	FD9
	FD10
	s3B3
	s3C
	s4
	s4A
	2
	2
	3
	s4B
	FD11
	FD12
	FD13
	FD14
	FD15
	FD16
	FD17
	3
	4
	FD18
	4
	5
	s4C
	5
	6
	7
	s4D
	8
	9
	s4E
	s4E1
	10
	11
	6
	13
	12
	14
	15
	7
	8
	9
	16
	10
	11
	s4E2
	s5
	13
	12
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

