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A B S T R A C T

Additive manufacturing (AM), also known as 3D printing, has been increasingly adopted in the aerospace, au-
tomotive, energy, and healthcare industries over the past few years. While AM has many advantages over
subtractive manufacturing processes, one of the primary limitations of AM is surface integrity. To improve the
surface integrity of additively manufactured parts, a data-driven predictive modeling approach to predicting
surface roughness in AM is introduced. Multiple sensors of different types, including thermocouples, infrared
temperature sensors, and accelerometers, are used to collect temperature and vibration data. An ensemble
learning algorithm is introduced to train the predictive model of surface roughness. Features in the time and
frequency domains are extracted from sensor-based condition monitoring data. A subset of these features is
selected to improve computational efficiency and prediction accuracy. The predictive model is validated using
the condition monitoring data collected from a set of AM tests conducted on a fused filament fabrication (FFF)
machine. Experimental results have shown that the proposed predictive modeling approach is capable of pre-
dicting the surface roughness of 3D printed components with high accuracy.

1. Introduction

Additive manufacturing (AM), also known as 3D printing, is an
advanced manufacturing process that joins materials together in a
layer-by-layer manner in order to create a three-dimensional object
with a computer-aided design model [1]. AM techniques can be clas-
sified into seven categories: material extrusion, powder bed fusion, vat
photopolymerization, material jetting, binder jetting, sheet lamination,
and directed energy deposition. Fused filament fabrication (FFF), which
is a material extrusion process, is one of the most widely used AM
processes. FFF fabricates objects using a continuous filament of a
thermoplastic material, which is heated in an extruder head, and then
deposited onto a build plate [2].

While AM has been widely used for rapid prototyping, one of the
limitations of AM is quality assurance and control [3–5]. For example,
warping is one of the most common problems in AM due to material
shrinkage which causes the corners of an object to lift and eventually
detach from the build plate [2,6]. In addition, additively manufactured
parts often have poor surface finish in comparison with subtractive
manufacturing processes [7–9]. Surface roughness affects the tribolo-
gical behavior of surfaces [10]. Because rough surfaces wear more

quickly than smooth surfaces, it is very important to predict and control
the surface roughness of additively manufactured parts [11–13]. Many
factors such as layer thickness, print orientation and print speed affect
surface roughness. This paper presents a novel online monitoring ap-
proach to predicting the surface roughness of 3D printed parts for FFF.

The remainder of the paper is organized as follows: Section 2 pro-
vides a review of the related work on process monitoring and surface
roughness prediction. Section 3 introduces an ensemble learning-based
approach to surface roughness prediction in AM. Section 4 presents an
experimental setup. Section 5 presents experimental results and the
performance of the predictive model. Section 6 provides conclusions
and future work.

2. Related work

This section reviews current process monitoring techniques for FFF
as well as the state-of-the-art in predictive modeling of surface rough-
ness. Based on the literature review, a research gap in surface roughness
prediction in AM is identified.
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2.1. Process monitoring in FFF

According to several literature reviews on process monitoring of AM
[14–17], pyrometers, thermocouples, displacement sensors and in-
frared (IR) imaging cameras have been widely used to monitor AM
processes. Numerous research efforts have been devoted to detect de-
fects by measuring temperatures, vibrations, optical emissions, and
strains. Rao et al. [18] introduced an online monitoring method for
failure detection in the FFF process. A set of AM tests was conducted on
a desktop 3D printer instrumented with multiple sensors such as
thermal couples, accelerometers, and an infrared temperature sensor.
Experimental results have shown that this method was capable of de-
tecting failure modes with very high accuracy. Zhao and Rosen [19]
developed a data-driven method that can monitor an exposure con-
trolled projection lithography process. This method was demonstrated
on real-time condition monitoring data. Experimental results have
shown that the data mining method can predict the height profile of
cured parts. Kousiatza and Karalekas [20] developed an online mon-
itoring system that predicts strain and temperature profiles using health
condition data generated by thermocouples and optical sensors. Re-
sidual strains were measured using Fiber Bragg grating sensors. Speci-
mens were fabricated on a FFF printer. Experimental results have
shown that the proposed approach is capable of predicting residual
strains and temperatures with high accuracy.

2.2. Surface roughness prediction

Galantucci et al. [21] studied the effects of various machining
parameters on the surface roughness of 3D printed parts. A set of tests
was conducted to study the effects of layer thickness and raster width
on surface roughness. Boschetto et al. [22] developed a predictive
modeling approach to estimating the surface roughness of parts built by
FFF. The predictive modeling approach was demonstrated on a set of
experiments. Boschetto and Bottini [23] developed a model that can
estimate the surface roughness of the parts built by FFF and barrel
finishing operations. The analytical model was validated using a set of
experimental datasets. Reeves and Cobb [24] developed an analytical
model of the surface roughness of the parts built by the stereo-
lithography process. The effects of layer thickness, surface angle, layer
profile angle, up-facing layer composition, and down-facing layer
composition on surface roughness were studied. Ahn et al. [6] devel-
oped a method to predict the surface roughness of 3D printed parts
based on the geometric data in an STL file. Multiple specimens were
fabricated on an SLA 3500 machine. The surface roughness of these
specimens was measured with a profilometer. Experimental results
have shown that the prediction accuracy of the model is less than one
micrometer.

In summary, while previous studies have attempted to develop
various techniques in order to estimate surface roughness in AM pro-
cesses, little research has been reported on predicting surface roughness
in AM with heterogeneous sensors and data-driven methods. To fill this
research gap, a novel data-driven predictive modeling approach based
on machine learning is introduced to predict the surface roughness of
additively manufactured components in FFF.

3. Predictive modeling of surface roughness

Fig. 1 illustrates the data-driven predictive modeling method which
involves offline model training and online prediction. Training data
were collected from in-situ sensors that measure the build plate tem-
perature and vibrations, the extruder temperature and vibration, and
the temperature of the deposited material. A set of features in the time
and frequency domains was extracted from the raw signals. A subset of
the features was selected based on their importance determined by
random forests. The subset of features was fed into the ensemble
learning algorithm to build a predictive model of surface roughness.

The predictive model will then be used for online prediction. As shown
in Table 1, the ensemble learning algorithm combines six different base
learners, including RF, AdaBoost, classification and regression trees
(CART), support vector regression (SVR), ridge regression (RR), and
random vector functional link (RVFL) network.

The base learning algorithms are combined using the following
weighted function:
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denotes the output of the algorithm, N is the
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base learner, J is the number of base learners. wj denotes the weight of
the jth base learner. The optimal weights assigned to the base learners
are determined using the sequential quadratic optimization (SQP)
method [25]. The cost function is described as follows:
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where P̄ denotes the actual surface roughness (ground truth), e( · ) is a
predefined error that measures the accuracy of the ensemble learning
algorithm.

3.1. Random forests

RF is an ensemble learning algorithm that constructs a multitude of
uncorrelated regression trees [26–28]. To develop a regression tree, a
splitting and a stopping criterion are required. To determine the best
split at each node, the following objective function needs to be solved:
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where yi is the response variable of ith sample xi. = …j p1, 2, , , (p de-
notes the number of splitting variables). s denotes a cutting point.

= ≤R j s X X s( , ) { | }j1 and = ≥R j s X X s( , ) { | }j2 denote two resulting re-
gions after the best split is determined. Xj denotes the jth splitting
variable. =c ave y x R j s1 ( | ϵ ( , ))i i 1 denotes the average of the yi′s that fall
into the region =R j s c ave y x R j s( , ). 2 ( | ϵ ( , ))i i1 2 denotes the average of
the yi′s that fall into the region R2(j, s). The process of splitting a parent
node into two child nodes is repeated until a stopping criterion is sa-
tisfied. In this paper, when the number of samples in a node falls below
a threshold, which is 10, the splitting process will be stopped. The
random forest consists of 500 regression trees.

3.2. AdaBoost

AdaBoost (i.e., Adaptive Boosting) is an ensemble learning algo-
rithm in which weak learners are combined into a weighted sum [29].
AdaBoost is an algorithm for constructing a strong learner as a linear
combination of weak learners:
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where hk(x) denotes the kth weak learner, K is the number of weak
learners, αk denotes the coefficient of the kth weak learner, and H(x)
denotes a strong learner. To determine the optimal coefficients αk, the
initial weight for a learner is updated after an iteration based on the
error associated with the learner. First, initialize weights =D i m( ) 1/i , m
is the number of samples. Second, train K weak learners and assign a
greater coefficient to the one with better performance. Third, assign a
greater weight for the training sample with a greater error. Forth, re-
peat the second and third steps to optimize the coefficients of the K
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weak learners. Last, combine the weak learners to create a strong
learner. In this study, the decision tree model was used as the weak
learners and K=300. RMSE was used to assess the error.

3.3. Classification and regression tree

CART is an algorithm that builds decision trees for making predic-
tions [30]. CART starts at a root node and then splits the node into
children nodes based on the least squares error criterion. This recursive
splitting process will continue until a stopping criterion is satisfied. A
typical stopping criterion is to stop splitting a node when the number of
samples in the node is less than five (5).

3.4. Support vector regression

SVR is a machine learning algorithm that solves the following
convex optimization problem [31,32]:

Minimize
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where C>0 determines the tradeoff between the flatness of the

function = 〈 〉 +f x ω x b( ) , and the amount up to which deviations
larger than ɛ are tolerated. Kernel functions such as polynomial,
Gaussian radial basis function (RBF), and sigmoid have been ex-
tensively used to transform data to new data in a higher dimension such
that the data are separable [32,33]. In this paper, the Gaussian RBF
kernel was used to transform the original dataset into a new dataset in a
higher dimensional space. The slack variables ξi and ξ *i denote the de-
viation from predicted values with an error of ɛ. The solution to the
optimization problem described above is given by
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3.5. Ridge regression

RR is an algorithm that conducts L2 regularization (i.e., L2-penalty)
by imposing a penalty that is determined by the sum of square of re-
gression coefficients [33]. RR minimizes the following objective func-
tion:
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where βj is a regression coefficient, β̂
ridge

is the optimal regression
coefficients, λ≥ 0 is a tuning parameter that controls the coefficients, N
is the number of samples, xij is the covariate with a dimension of N by
Q, yi is the response variable. The optimization problem above can be
solved by

= + −X X Xβ λ y^ ( I) .
ridge

T T1 (9)

where I is a Q×Q identity matrix. If X is replaced with its kernel vector
Φ, Eq. (9) can be rewritten as

= + −Φ Φ Φβ λ y^ ( I) .
ridge

T T1 (10)

Fig. 1. A data-driven predictive modeling approach to predicting surface roughness.

Table 1
Base learner selection.

Category Selected algorithm

Decision tree-based Classification and regression trees (CART)
Neural network-based Random vector functional link (RVFL) network
Regularization-based Ridge regression (RR)

Support vector regression (SVR)
Ensemble-based Random forests (RF)

AdaBoost
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where the kernel vector Φ is a matrix of a kernel function
=〈 〉k x x x x( , ): Φ( ), Φ( )i j i j . In this study, the kernel function

= − −k x x exp( , ) ( )i j
x x
σ

acos( )
2

i j 2

2 where σ2=0.5 was used.

3.6. Random vector functional link network

Random vector functional link (RVFL) network [34] is a new type of
single layer feed forward neural network (SLFN). RVFL has a similar
structure to classical SLFN. However, in addition to the neuron con-
nections between hidden and output layers, RVFL has direct neuron
connections between input and output layers. The weights between
input and hidden layers are randomly generated. The output of RVFL is
represented as

= Fo ωi i (11)

where oi (i=1, 2,…, N, N is the number of samples) is the prediction of
the ith sample, Fi is the matrix version of the assembly of the original
inputs and the outputs of the hidden layer for the ith sample, and ω is
the weights of the output layer. The learning algorithm, such as the
regularized least square, is used to estimate ω by minimizing the pre-
diction error E.

∑= − +E y o ωarg min ( ) ϵ ,
ω i

N

i i
2 2

(12)

where yi is the response variable of ith sample and ϵ is a small positive
constant. In this study, ten neurons were used in the hidden layer. The
regularized least square algorithm was used to train the network.

4. Experimental setup

Fig. 2 shows an experimental setup. The specimens were fabricated
on a commercial desktop 3D printer (MakerBot Replicator Plus). The
build material was Polylactic Acid (PLA). To collect condition mon-
itoring data, the 3D printer was instrumented with five sensors. Two
thermocouples were used to measure the temperature of the build plate
and extruder, respectively. Two accelerometers were used to measure
the vibration of the build plate and extruder. An IR non-contact tem-
perature sensor was used to measure the temperature of the deposited
material. Table 2 lists the details about the sensors and measurements.

After printing a specimen, the surface roughness of the specimen
was measured with a profilometer. A profilometer measures small
surface variations in vertical stylus displacement as a function of po-
sition. Roughness average (Ra) was used to quantify surface roughness.
Fig. 3(a) shows the CAD model of an engine intake flange. Fig. 3(b)
shows where surface roughness was measured.

To validate the predictive model, we conducted a full factorial ex-
periment with three factors as shown in Table 3. Each factor has three
levels. Each AM test was replicated three times. Eighty-one (81) tests
were conducted. Table 4 shows the experimental data. Sensor-based
condition monitoring data were collected from ten (10) signal channels
during each test. Fig. 4 shows the extruder temperature and build plate
vibration signals.

5. Results and discussions

We extracted eight (8) statistical features (i.e., maximum, median,
mean, minimum, standard deviation, central moment, skewness and
kurtosis) in the time domain from each signal channel. In addition, we
extracted four (4) features in the frequency domain, including max-
imum, median, mean and minimum of the spectral-amplitude, from the
vibration sensors using a fast Fourier transform (FFT) algorithm. A total
number of 104 features was extracted from each test. In order to im-
prove computational efficiency as well as to avoid overfitting, a subset
of the features was selected based on feature importance calculated
using the RF algorithm. Fig. 5 shows the prediction accuracy with
varying number of selected features. As shown in Fig. 5, predicting
surface roughness with more features does not necessarily increase
prediction accuracy. This is because some of the features are either

Fig. 2. Experimental setup.

Table 2
Sensor specification and measurement.

Sensor specification Measurement

Thermocouple 1 (5TC-GG-K-20-36, Omega) Build plate temperature
Thermocouple 2 (5TC-GG-K-20-36, Omega) Extruder temperature
Accelerometer 1 (ADXL335, Analog Devices) Build plate vibration
Accelerometer 2 (ADXL335, Analog Devices) Extruder vibration
IR Temperature Sensor (MLX90614, Melexis

Technologies NV)
Melt pool temperature

Fig. 3. (a) CAD model of the engine intake flange; (b) measurement of surface
roughness.

Table 3
Experimental design.

Factor Level 1 Level 2 Level 3

Layer thickness (mm) 0.20 0.25 0.30
Extruder temperature ( °C) 210 220 230
Print speed/extrusion rate 0.85 1.00 1.15
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redundant or irrelevant. Removing these irrelevant features will not
reduce but instead improve prediction accuracy. The experimental re-
sults have shown that the predictive model built by the ensemble
learning algorithm with forty (40) features outperforms those trained
with 20, 60, 80, and 104 features. Therefore, forty (40) out of 104
features were selected to train the predictive model. Table 5 lists top
five (5) most important features based on their importance. These
features include (a) the maximum frequency amplitude of the build
plate vibration, (b) the maximum extruder vibration in the Z direction,
(c) the standard deviation of the build plate temperature, (d) the
minimum melt pool temperature, and (e) the skewness of the extruder
vibration in the Y direction. More details about feature importance
assessment can be referred to Grömping [35].

The performance of the predictive models was measured using root-
mean-square-error (RMSE) and relative error (RE). The predictive
models were trained on a portion of the total data, and then tested on
the remaining data. For example, one of the predictive models was
trained on 50% of the raw data, and then tested on the rest 50% of the
raw data.

Fig. 6 shows the RMSE and RE of the predictive model trained on
50% of the total samples (training sample size: 40). The performance
ranking of the base learners is RR, SVR, CART, RF, RVFL, and AdaBoost

based on both RMSE and RE. The performance of CART is comparable
to the performance of RF. Similarly, the performance of RR is close to
the performance of SVR. As expected, the ensemble learning algorithm
outperforms the individual base learners. Moreover, the predictive
models were tested on the data collected during a time interval ranging
from 10% to 100% of the build time. As shown in Fig. 6, except for
AdaBoost, the individual base learners and the ensemble can predict
surface roughness in real-time with high accuracy (RMSE: 0.7 µm; RE:
0.1) when the elapsed time is only a small percentage of the total build
time. For example, the RMSEs of RF, AdaBoost, CART, SVR, RR, and
RVFL tested on the data collected by the time 20% of the part was built
are 0.652, 0.859, 0.644, 0.563, 0.569, and 0.692, respectively, whereas
the RMSE of the ensemble method is 0.566 µm. Increasing the amount
of test data does not improve the performance of the base learners and
the ensemble significantly. Table 6 lists the RMSEs and REs of the
predictive models trained by the based learners and the ensemble
learning algorithm. Fig. 7 shows the actual and predicted surface
roughness for 41 test datasets. The test data were collected when 50%
of the total build time elapsed.

Similarly, Fig. 8 shows the RMSE and RE of the predictive model
trained on 70% of the total samples (training sample size: 56). The
performance ranking of the base learners is RF, RR, SVR, CART, Ada-
Boost, and RVFL based on both RMSE and RE. The performance of RF is

Table 4
Experimental data.

ID Feed
rate
to
Flow
rate

Layer
thickness
(mm)

Extruder
temperature
(°C)

Roughness
(um)

Roughness
(um)

Roughness
(um)

1 1 0.3 210 5.972 6.056 5.898
2 1 0.3 230 6.183 6.152 6.062
3 1 0.3 220 6.296 6.319 6.234
4 1 0.25 210 4.995 5.032 5.080
5 1 0.25 230 5.613 5.715 5.709
6 1 0.25 220 5.664 5.436 5.142
7 1 0.2 210 4.146 4.569 4.820
8 1 0.2 230 5.565 4.758 4.987
9 1 0.2 220 4.925 4.724 5.314
10 0.85 0.3 210 5.989 5.791 6.172
11 0.85 0.3 230 6.124 6.240 6.155
12 0.85 0.3 220 5.828 6.299 6.006
13 0.85 0.25 210 5.184 5.258 5.238
14 0.85 0.25 230 5.359 5.453 5.582
15 0.85 0.25 220 5.498 5.421 5.427
16 0.85 0.2 210 4.414 4.476 4.589
17 0.85 0.2 230 5.619 5.342 5.907
18 0.85 0.2 220 4.750 4.888 5.038
19 1.15 0.3 210 5.918 5.749 5.975
20 1.15 0.3 230 6.217 6.327 6.251
21 1.15 0.3 220 5.729 6.155 6.223
22 1.15 0.25 210 5.142 5.086 5.489
23 1.15 0.25 230 5.359 5.749 5.379
24 1.15 0.25 220 5.267 5.311 5.390
25 1.15 0.2 210 4.626 4.623 4.445
26 1.15 0.2 230 5.354 5.306 5.357
27 1.15 0.2 220 5.151 4.953 4.936

Fig. 4. Sensor-based measurements: (a) extruder temperature and (b) build plate vibrations (Y direction).

Fig. 5. Impact of feature selection on the accuracy of the predictive models
(Training data: 50% of the experimental data).

Table 5
Top 5 most important features.

Rank Feature Importance

1 Max frequency amplitude of build plate vibration (Y) 0.162
2 Max extruder vibration (Z) 0.159
3 Standard deviation of build plate temperature 0.144
4 Mini melt pool temperature 0.096
5 Skewness of extruder vibration (Y) 0.091

Z. Li et al. Robotics and Computer Integrated Manufacturing 57 (2019) 488–495

492



comparable to the performance of RR and SVR. The ensemble learning
algorithm still outperforms the individual base learners. Fig. 9 shows
the actual and predicted surface roughness for 25 test datasets. The test
data were collected by the time when 50% of the total build time
elapsed.

Fig. 10 shows the RMSE and RE of the predictive model trained on
90% of the total samples (training sample size: 72). The performance
ranking of the base learners is SVR, RR, RF, CART, RVFL, and AdaBoost
based on both RMSE and RE. The performance of SVR is comparable to
the performance of RR and RF. Again, the ensemble learning algorithm
outperforms the individual base learners. Fig. 11 shows the actual and
predicted surface roughness for nine test datasets. The test data were
collected by the time when 50% of the total build time elapsed.

Table 7 shows the RMSE and RE of the models trained on 50%–90%
of the total data. These models were tested on the data collected by the
time when 20%–100% of the total build time elapsed. Table 8 lists the
optimal weights assigned to the base leaners. AdaBoost was not used in
any of the ensembles because its weight was zero. The weights assigned
to RF are greater because RF outperformed other base learners.

Our findings suggest that the surface roughness of the 3D printed
specimens primarily depends on the frequency amplitude of the build
plate vibrations, the extruder vibrations, the temperature of the build
plate, and the melt pool temperature. In addition, the experimental
results have shown that the predictive models trained by the ensemble
learning algorithm is capable of predicting surface roughness of 3D
printed parts in real-time given condition monitoring data and surface
roughness measurements. The existing methods predict surface rough-
ness using process parameters such as layer thickness and build direc-
tion, whereas the predictive modeling method introduced in this paper
predicts surface roughness using sensor-based condition monitoring
data. The ensemble learning algorithm boosts six weak learners to a
stronger one, which makes better predictions.

6. Conclusions and future work

This paper has presented an ensemble learning-based approach to
surface roughness prediction in FFF processes. Multiple sensors were
used to collect real-time condition monitoring data. A set of features in
the time and frequency domains were extracted from the raw sensor-
based signals. To improve computational efficiency as well as to avoid
overfitting, a subset (40) of the features was selected using RF based on
feature importance. The predictive models were trained using the en-
semble learning algorithm. The ensemble learning algorithm combined
six different machine learning algorithms, including RF, AdaBoost,
CART, SVR, RR, and RVFL network. The experimental results have
shown that the predictive models are capable of predicting the surface
roughness of the 3D printed specimens. The performance of the en-
semble outperforms the individual base learners based on RMSE and
RE. In the future, the proposed approach will be used to predict the

Fig. 6. Accuracy of the predictive models on test data (training data: 50% of the
experimental data): (a) RMSE and (b) RE.

Table 6
Online prediction performance (Training data: 50% of the experimental data).

Error Percentage of build time RF AdaBoost CART SVR RR RVFL Ensemble

RMSE 20% 0.652 0.859 0.644 0.563 0.569 0.692 0.556
40% 0.658 0.816 0.652 0.608 0.571 0.624 0.532
60% 0.61 0.753 0.543 0.658 0.566 0.632 0.527
80% 0.577 0.776 0.563 0.601 0.545 0.627 0.513
100% 0.554 0.86 0.633 0.616 0.545 0.669 0.511

RE 20% 0.092 0.126 0.092 0.081 0.082 0.106 0.08
40% 0.094 0.116 0.096 0.088 0.083 0.097 0.083
60% 0.087 0.112 0.078 0.091 0.082 0.097 0.078
80% 0.085 0.118 0.082 0.085 0.079 0.089 0.077
100% 0.081 0.13 0.09 0.088 0.08 0.105 0.077

Fig. 7. Actual vs predicted surface roughness using 50% of the experimental
data collected from 41 samples.
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surface roughness of additively manufactured components in selective
laser sintering and electron beam melting.
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Fig. 8. Accuracy of the predictive models on test data (training data: 70% of the
experimental data): (a) RMSE and (b) RE.

Fig. 9. Actual vs predicted surface roughness using 50% of the experimental
data collected from 25 samples.

Fig. 10. Accuracy of the predictive models on test data (training data: 90% of
the experimental data): (a) RMSE and (b) RE.

Fig. 11. Actual vs predicted surface roughness using 50% of the experimental
data collected from 9 samples.
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