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a b s t r a c t 

Remaining useful life (RUL) prediction is crucial for the implementation of predictive maintenance strategies. 

While significant research has been conducted in model-based and data-driven prognostics, there has been little 

research reported on the RUL prediction using an ensemble learning method that combines prediction results 

from multiple learning algorithms. The objective of this research is to introduce a new ensemble prognostics 

method that takes into account the effects of degradation on the accuracy of RUL prediction. Specifically, this 

method assigns an optimized, degradation-dependent weight to each learner (i.e., learning algorithm) such that 

the weighted sum of the prediction results from all the learners predicts the RULs of engineered systems with 

better accuracy. The ensemble prognostics method is demonstrated using two case studies. One case study is 

to predict the RULs of aircraft bearings; the other is to predict the RULs of aircraft engines. The numerical 

results have shown that the predictive model trained by the ensemble learning-based prognostic approach with 

degradation-dependent weights is capable of outperforming the original ensemble learning-based approach and 

its member algorithms. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Prognostics refers to “an estimation of time to failure and risk for

ne or more existing and future failure modes ” [1] . In order to effec-

ively support decision-making processes for condition-based mainte-

ance (CBM), it is critical to predict the remaining useful life (RUL) of

n engineered system [2] . A large number of prognostic methods have

een developed over the past two decades [3] . In general, prognostic

ethods fall into three categories: (1) model-based, (2) data-driven, and

3) hybrid methods [4] . Model-based prognostics refers to the meth-

ds that use models derived from first principles or probability theory.

or example, particle filters (PFs) [5,6] , Kalman filter [7] , and hidden

arkov model [8] are model-based methods that leverage degradation

odels derived based on first principles (i.e., underlying degradation

echanisms) or probability theory. The prediction accuracy of model-

ased methods depends on the prior knowledge of physical behavior

4] . However, the domain knowledge for complex systems are not al-

ays available or too expensive to acquire. To complement model-based

ethods, data-driven methods refer to the methods that use models

earned exclusively from data. Typical data-driven methods use inter-
∗ Corresponding author at: Department of Mechanical Engineering, Iowa State University, Am

E-mail addresses: chaohu@iastate.edu , huchaostu@gmail.com (C. Hu). 

ttps://doi.org/10.1016/j.ress.2017.12.016 

vailable online xxx 

951-8320/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: Z. Li et al., Reliability Engineering and System Sa
olation [9] , extrapolation [10] , and machine learning [11] for RUL

rediction. In data-driven methods, training data are used to design and

rain a predictive model; testing data are used to validate the predictive

odel. Data-driven methods are typically more effective than model-

ased methods for complex engineered systems such as aircraft engines

nd wind turbines. Hybrid prognostics refers to the methods that facil-

tate the combined use of model-based and data-driven methods. Liao

nd Köttig [4] presented a comprehensive review on hybrid prognostics

or RUL prediction. According to this review, hybrid prognostics shows

reat potential for achieving better prediction accuracy than model-

ased and data-driven prognostics. Ensemble learning-based prognos-

ics (or ensemble prognostics) is among one of the most popular hybrid

ethods, and has been shown to be capable of improving prediction

ccuracy by combining multiple learning algorithms [12] . While much

esearch has been conducted in the area of prognostics, there are still

emaining challenges [13] . This paper focuses on addressing the follow-

ng issue: How can the effects of time-dependent degradation be taken

nto account when predicting the RUL of an engineered system? 
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Nomenclature 

ANN artificial neural network 

CBM condition-based maintenance 

CV cross validation 

ES similarity-based interpolation (SBI) with the least- 

square exponential fitting 

EDI ensemble prognostics with degradation-independent 

weights 

EDD ensemble prognostics with degradation-dependent 

weights 

EOL end of life 

FPT first predicting time 

LWR locally weighted linear regression 

PF particle filter 

PSW phase space warping 

PHM prognostics and health management 

QB Bayesian linear regression with the least-square 

quadratic fitting 

RUL remaining useful life 

RVM relevance vector machine 

RS SBI with RVM 

RNN recurrent neural network 

SBI similarity-based interpolation 

SVM support vector machine 

SS SBI with SVM 

VHI virtual health index 

(1) An ensemble learning-based prognostic approach that accounts

for the effects of time-dependent degradation is introduced. 

(2) Two case studies were conducted to demonstrate the ensemble

learning-based method with degradation-dependent weights. 

The remainder of this paper is organized as follows. Section 2 reviews

he related work. Section 3 presents the ensemble prognostics method.

ection 4 discusses the experimental results. Section 5 provides conclu-

ions and future work. 

. Related work 

.1. Ensemble learning 

This section provides a brief overview of ensemble learning in RUL

rediction. Ensemble-learning methods are learning algorithms that ag-

regate predictions produced by multiple learning algorithms in order to

mprove predictive performance [14] . Previous studies have shown that

n ensemble learning algorithm typically outperforms any of the con-

tituent learning algorithms alone [15] . Sun et al. [16] demonstrated

he effectiveness of ensemble learning for estimating gas turbine en-

ine degradation. In this study, a dynamic weight allocation method

ased on the Adaboost ensemble learning algorithm was introduced to

rain several multi-layer perceptron neural networks. Experimental re-

ults have shown that the ensemble learning-based fusion prognostic

ethod can improve the prediction accuracy by 35% when compared

ith a single neural network model. Xing et al. [17] combined an empir-

cal exponential and a polynomial regression model to estimate the RUL

f lithium-ion batteries. The Monte Carlo simulation was used to calcu-

ate the ensemble weights. The proposed ensemble method was able to

rack the aging trend of the battery while either the single exponential

odel or the single polynomial model failed in the case study. Zhang

t al. [18] introduced an ensemble learning method for predicting the

UL of rolling bearings. Two artificial neural networks were combined

sing a simple weight-vector. Baraldi et al. developed a PF-based prog-

ostic approach that employs a bagged ensemble of artificial neural net-

orks (ANNs) as an empirical measurement model in PF, and demon-
2 
trated this approach through a case study on the RUL prediction of

n engineering structure [48] . The authors later proposed an ensemble

ethod that aggregates four kernel regression models to estimate the

ealth conditions of choke valves used in offshore oil platforms [19] .

he analytic hierarchy process was employed to obtain the ensemble

eights for the kernel regression models. In addition, another ensemble

ethod that combines Gaussian process regression and similarity-based

egression [20] was presented to improve prediction accuracy. Wu et al.

21] introduced a random forests-based prognostic approach to train a

redictive model by aggregating a collection of regression trees. The

ffectiveness of this method was demonstrated using tool wear predic-

ion. Experimental results have shown that the random forests-based

rognostic method can generate predictions with very high accuracy.

barufatti et al. [49] trained a committee of ANNs with strain patterns

imulated with a finite element model and used the trained ANNs to esti-

ate the crack length in real time. The crack-length estimate was fed as

n input (or measurement) into sequential Monte-Carlo simulation that

roduced the posterior distribution of the RUL of a structural component

ubjected to fatigue crack propagation. Cadini et al. [50] also employed

 committee of trained ANNs to estimate the crack length of a struc-

ural component within a PF-based probabilistic framework, although

heir primary application was early crack diagnostics, not prediction of

rack propagation and RUL. Ensemble learning methods have been ap-

lied to the estimation of aircraft engine performance. Peel [22] used

he Kalman filter to combine prediction results produced by different

NNs. Experimental results have shown that this method outperforms

ach artificial network model using the prognostic data sets for the 2008

EEE PHM Data Challenge Competition. 

While ensemble learning has been applied in the field of PHM to

nhance the accuracy of RUL prediction, only a few studies have intro-

uced ensemble learning-based approaches that consider the effects of

ime-dependent degradation on the prognostic accuracy. For example,

eng and Dong [23] showed that by considering the deterioration of

he pumps, the degradation-dependent prognostics approach produced

ore accurate RUL prediction than the degradation-independent one.

iu et al. [24] proposed a degradation-dependent autoregressive model

o improve the RUL prediction accuracy for lithium-ion batteries. Lim

t al. [25] proposed a degradation-dependent Kalman filter ensemble

rognostics approach, which takes different degradation stages into ac-

ount. Liu et al. [26] used dynamic weights to aggregate the RUL esti-

ation results by several probabilistic support vector regression mod-

ls. Their experimental validation demonstrated better prediction per-

ormance of the dynamic-weighted ensemble model than that of any

ingle PSVR model. Although these aforementioned studies have inves-

igated the effects of degradation on prognostic accuracy, very limited

esearch has been conducted on how to best leverage these effects to

mprove the RUL prediction accuracy. 

.2. Prediction of engine performance 

This section reviews the state-of-the-art in the prediction of RUL

or aircraft engines. Chen et al. [27] presented a review on the RUL

rediction of aircraft engines (or aeroengines) in 2011, where the ap-

lications of model-based, data-driven, and hybrid methods have been

ummarized. The PF, neural network and relevant vector machine were

egarded as three promising techniques for RUL estimation. Recently,

lam et al. [28] integrated the ANN and autoregressive model into a pro-

ressive window framework to predict the RULs of aircraft turbine en-

ines. Liu et al. [29] presented a Kalman filter-based degradation model

hat fused multiple monitoring parameters for aeroengine RUL estima-

ion. In addition, a Bayesian degradation model for aeroengine RUL pre-

iction was developed [30] . Lasheras et al. [31] proposed a data-driven

odel combining principal component analysis, dendrograms, and clas-

ification and regression trees for RUL prediction of aircraft engines.

he principal component analysis and dendrograms were used to extract

he most informative features from the multiple sensory data sets of the
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f  
eroengine. Experimental analysis demonstrated that the feature extrac-

ion process improved the RUL prediction precision over the direct use

f neural network model. Lim et al. [32] developed a data-driven model

hat integrated a feature-selection module and a time window neural

etwork module to predict the RULs of aeroengines. Experimental re-

ults have shown that the K-means-based feature selection method can

mprove the prediction accuracy of the model trained by the ANN. Their

nalysis results demonstrated that the K-means based feature-selection

enefitted the neural network prediction model. It is reasonable to get

etter prediction using feature-selection in the prediction process be-

ause the most informative features of the system degradation could be

xtracted from the sensory data sets. Bluvband and Porotsky [33] con-

idered the suspended time-series of the NASA aircraft engine data sets.

 series of support vector regression and support vector classification

odels were established to solve the missing data problem. The numer-

cal analysis results indicate acceptable performance of their proposed

ethod for aeroengine RUL prediction. Yuan et al. [34] employed long

hort-term memory neural network as a data-driven model to both di-

gnose engine faults and predict engine RULs. Yan et al. [35] proposed

 data fusion method for monitoring and predicting the health status

f an aircraft engine under different operation conditions. Specifically,

 health index was introduced to measure the operation conditions of

he engine using 21 sensors. This method accounted for the effects of

ifferent operation conditions in a unified manner. Experimental re-

ults have shown that the health index, derived from multi-sensor data,

utperformed traditional methods that only use single sensor data. Xi

t al. [47] proposed a copula-based sampling method for data-driven

rognostics that predicts the RUL of a testing unit based on its degra-

ation level. A copula-based statistical model was first constructed in

he offline training phase to learn the statistical relationship between

he failure time and the time realizations at specified degradation lev-

ls, and a simulation-based approach was used in the online testing

hase to predict the probable failure time and RUL of a testing unit.

he prognostic data sets of aircraft engines in the 2008 IEEE PHM Chal-

enge Competition was employed to demonstrate the effectiveness of

he proposed copula-based sampling method. Wang and Gao [36] pre-

ented a joint state and parameter estimation method for estimating the

ealth of an aircraft engine. This method accounted for time-dependent

egradation rates at different stages of engine operation by treating the

perating parameters as time-varying variables. The prediction of en-

ine performance was performed using PF under the Bayesian inference

ramework. A continuous resampling strategy was used to improve the

rediction accuracy of PF. Experimental results have shown that PF is ef-

ective for detecting abrupt faults and predicting degradation of aircraft

ngines. 

In summary, while a number of previous studies have investigated

he effectiveness of ensemble learning methods in PHM, only a few pa-

ers have taken the effects of performance degradation into account,

nd to the best of our knowledge, none of these papers has predicted

he performance degradation of aircraft engines using ensemble learn-

ng methods. 

. Methodology 

.1. A generic computational framework 

A generic computational framework of the ensemble learning-based

rognostic approach with degradation-dependent weights is illustrated

n Fig. 1 and Table 1 . 

A training data set Y = [ y 1 , y 2 ,…, y N ] 
T includes multi-dimensional

easurement data from N different run-to-failure units, where y i ( i = 1,

,…, N ) denotes the measurement data from the i th training unit. The

raining data set is used to train a predictive model. A test data set y t 
enotes the measurement data from an online testing unit. The test-

ng data set is used to validate the predictive model. A weight vec-

or w 

s t = [ w 

s t , w 

s t ,…, w 

s t ] T denotes the weights associated with the
1 2 M 

3 
egradation stage s t of the testing unit, where M denotes the number

f member algorithms. Because the weight-learning process recursively

earns the health conditions of a system from new training data in an

ffline manner, the degradation-dependent weights are adaptively up-

ated. The prediction accuracy of the ensemble prognostics can be im-

roved by updating the weights associated with different degradation

tages. More details about the offline training and online testing are

resented in Sections 3.2 and 3.3 . 

.2. Offline training phase 

The objective of the offline training process, including degradation-

tage classification, CV-testing, and weight-optimization, is to optimize

he degradation-dependent weights associated with different degrada-

ion stages. 

.2.1. Classification of degradation stages 

In degradation-stage classification, a number of degradation stages

re predetermined for an engineered system. The degradation stages are

efined based on the following guideline: The system units with similar

egradation characteristics should be grouped into the same degrada-

ion stage. More specifically, the system units with health index ranging

etween certain values should be grouped into the same degradation

tage. To determine the degradation stages, the locally weighted linear

egression (LWR) method is introduced [37] . 

In LWR, a virtual health index (VHI) [38] is introduced as a data

re-processing scheme to transform the multi-dimensional measurement

ata set Y into one-dimensional VHI. Then, a smooth curve is con-

tructed to fit the VHI index h and cycle index t using LWR such that the

ntire degradation process of each unit can be identified by the VHI val-

es. Based on the VHI values, a number of different degradation stages

an be predefined. It should be noted that there is a trade-off between

he number of degradation stages and prediction accuracy. In general,

he more degradation stages, the more accurate the predictive model is.

owever, more degradation stages will result in longer training time.

n addition, because the original VHI includes noise, a smooth VHI-

ycle curve will help avoid misclassification issues as well as balance

he trade-off. LWR performs a regression around a point of interest on

he VHI-cycle curve (i.e., a subset of the data points) instead of all the

ata points [37] . In this case, a fitted curve based on a subset of the data

ill not change due to the change of the data outside the subset. 

The N training units are used to define the degradation stages since

he damage in each training unit grows until the occurrence of at least a

ystem failure. Based on the filtered VHI curves of the N training units,

 stage-boundary index vector B = [ b 0 , b 1 ,…, b S ] 
T can be determined,

here b 0 is a constant VHI that determines the upper boundary of the

st stage and b s ( s = 1, 2,…, S with S denoting the number of degradation

tages) is a constant VHI value that determines the lower boundary of

he s th stage. To determine the stage-boundary B , an empirical model

r an analytical model is required. For example, the empirical model

ypically requires expert domain knowledge on the system degradation

eatures. The analytical model can be developed using clustering algo-

ithms. In this work, for the purpose of alleviating the complexity of the

roposed ensemble learning-based prognostics, the empirical model is

mployed to determine the stage-boundary B . The expert domain knowl-

dge on the degradation of aircraft engines is used to determine the

oundary b s that divides the training data set into moderate, severe and

ritical degradation stages. 

.2.2. Generation of CV-testing units 

The RUL prediction of each member algorithm is generated through

V-testing on the CV-testing units in each degradation stage. More de-

ails about the CV-testing process is presented as follows: 

Step 1 : Generate the synthetic CV-testing units for each degradation

tage. These CV-testing units are conducted by truncating the run-to-

ailure VHI data of each training unit in Y for S times (i.e., for S stages)
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Offline training Online testing

RUL j

… …PHM 
algorithm 1

PHM
algorithm j

PHM 
algorithm M

RUL 1 … … RUL M

Weighted-sum Predicted RUL

Testing data yt Training data Y

Locally 
weighted 
regression

Degradation 
stage st

Classify degradation 
stages with LWR

Generate CV-testing 
units in each stage

Estimate CV error in 
each stage

Optimize degradation-
dependent weights

Algorithm 
weights wst

Fig. 1. The flowchart of the proposed method for ensemble prognostics. 

Table 1 

A generic computational framework. 

1. Offline training: Compute the degradation-dependent weight vector for each degradation stage ( Section 3.2 ) 

1.1 Determine the degradation stages using the locally weighted linear regression method ( Section 3.2.1 ) 

1.2 Generate CV-testing units for each degradation stage by random truncations ( Section 3.2.2 , Step 1) 

1.3 Perform CV-testing for each degradation stage ( Section 3.2.2 , Step 2) 

1.4 Optimize the weight vector in each degradation stage ( Section 3.2.3 ) 

2. Online testing: Make predictions using the degradation-dependent weights ( Section 3.3 ) 

2.1 Identify the degradation stage of the online testing unit ( Section 3.3.1 ) 

2.2 Predict the RULs of the testing unit using M member algorithms ( Section 3.3.2 ) 

2.3 Make predictions using the predictive model trained by the ensemble learning-based prognostic approach ( Section 3.3.2 ) 
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Fig. 2. Generation of 3 CV-testing units from a training unit (unit #1) via truncating the 

VHI data of the training unit. 

m  

t  

t  ∑
 

t the cycles corresponding to S pre-assigned RULs [12] . The RUL that

s pre-assigned to each training unit for the s th stage is randomly gener-

ted from a uniform distribution between the minimum and maximum

alues of the RULs of the unit. The range of the uniform distribution

or a degradation stage is selected based on the fact that the variation

f the pre-assigned RULs should be sufficiently great to represent the

erformance of individual algorithms at the stage. For example, it is as-

umed that the filtered VHI curves of N 

s training units partially fall into

he VHI range of the s th ( s = 1, 2,…, S ) degradation stage. For the i th

 i = 1, 2,…, N s ) training unit, this step first identifies the minimum and

aximum RULs, L i 
s ,min and L i 

s ,max , of the unit if the fitted VHI of the

nit falls into the s th stage, then randomly selects an RUL, L i 
s T , that falls

etween L i 
s, min and L i 

s ,max , and truncates the VHI data of the training

nit at the cycle corresponding to L i 
s T . Finally, we obtain N 

s synthetic

V-testing units for the s th degradation stage whose pre-assigned RULs

re L s 
T = [ L 1 

s T , L 2 
s T ,…, L Ns 

s T ]. 𝐈 𝑠 = { 𝑖 ∈ [ 1 , 𝑁 ] |𝑠 ∈ 𝐬 ( 𝐲 𝑖 ) } denotes an in-

ex set that contains the indices of all training units that are used to

enerated the N 

s CV-testing units. s ( y i ) denotes a set of degradation

tages where the filtered VHI data of the i th training unit y i lie. Ideally,

ach training unit can be used to generate CV-testing units for all degra-

ation stages (i.e., N 

s = N , for s = 1, 2,…, S ); however, since the training

nits may start from different initial health conditions, the initial VHI

 i 0 may fall below the boundaries of the first several stages (e.g., b 1 , b 2 
nd b 3 ). Therefore, the numbers of CV-testing units for the first several

tages may be less than N (i.e., N 

s < N ). 

Fig. 2 illustrates the generation of 3 CV-testing units from a training

nit (e.g., unit #1), where three degradation stages ( S = 3) are consid-

red. The time-series VHI data of the training unit are truncated at three

ycles corresponding to three randomly selected RULs (i.e., L 1 
1 T , L 1 

2 T 

nd L 1 
3 T ). As a result, 3 CV-testing units with pre-assigned RULs (i.e.,

 1 
1 T , L 1 

2 T and L 1 
3 T ) are generated, each of which is associated with a

pecific degradation stage. 

Step 2 : Conduct k -fold CV with the CV-testing units for each degra-

ation stage. This step randomly divides the CV-testing data set for

ach stage into k disjoint subsets. The size of each subset is approxi-
 t  

4 
ately the same [12] . Let I s 
m , m = 1, 2,…, k , denote the index set of the

raining units whose measurement data generate the CV-testing units in

he m th subset for the s th stage. It easily follows that 𝐈 𝑠 = ∪𝑘 
𝑚 =1 𝐈 

𝑠 
𝑚 

and
𝒌 

𝒎 =1 𝑁 

𝑠 
𝑚 
= 𝑁 

𝑠 . The CV process is conducted k times. In each CV trial,

he CV-testing units from the training units in one of the k subsets are
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sed for testing; the training units in the other k − 1 subsets are used for

raining. Thus, each CV-testing unit from I s is used once for testing, and

ach training unit in I s is used k − 1 times for training. 

During the k -fold CV, the M member algorithms predict RULs, ̂𝐋 

𝑠 =
 ̂𝐋 

𝑠 
1 , ̂𝐋 

𝑠 
2 , … , ̂𝐋 

𝑠 
𝑀 

] T , where ̂𝐋 

𝑠 
𝑗 

denotes the predicted RULs of the CV-testing

nits by the j th member algorithm. The CV error for the s th degradation

tage is computed by taking an average across all k trials as expressed

elow: 

 

𝑠 
𝐶𝑉 

= 

1 
𝑁 

𝑠 

𝑘 ∑
𝑚 =1 

∑
𝑖 ∈𝐈 𝑠 𝑚 

𝑒 
(
𝐿̂ 

𝑠 
𝑖 

(
𝐰 

𝑠 , ̂𝐋 

𝑠 
(
𝐲 𝑠 
𝑖 
, 𝐘 ∖ 𝐘 𝑚 

))
, 𝐿 

𝑠𝑇 
𝑖 

)
(1)

here 𝐿̂ 

𝑠 
𝑖 

denotes the ensemble-predicted RUL of the i th CV-testing unit

t the s th stage; e ( •) is a predefined evaluation metric that measures

he accuracy of the ensemble prediction; w 

s = [ w 1 
s , w 2 

s ,…, w M 

s ] T is the

eight vector of the member algorithms associated with the s th stage;

 i 
s is the measurement data from the CV-testing unit; Y m 

is the m th

raining data subset; and L i 
s T denotes the true RUL of the i th unit at the

 th stage. The outcome of Step 2 is the CV error for each degradation

tage. 

.2.3. Optimization of degradation-dependent weights 

To reduce the CV error, the degradation-dependent weight vectors

 = [ w 

1 , w 

2 ,…, w 

S ] T associated with the S degradation stages need

o be optimized. In the previous research [12] , an optimization-based

eighting scheme was proposed to maximize the accuracy and robust-

ess of an ensemble by synthesizing the prediction accuracy and di-

ersity of its member algorithms. In this study, the optimization-based

eighting scheme is used to optimize the degradation-dependent weight

ectors. The weights for the s th degradation stage can be determined by

olving the following optimization problem: 

Minimize 
𝐰 𝑠 

𝜀 𝑠 
𝐶𝑉 

= 𝜀 𝑠 
𝐶𝑉 

(
𝐿̂ 

𝑠 
𝑖 

(
𝐰 

𝑠 , ̂𝐋 

𝑠 
(
𝐲 𝑖 
))
, 𝐿 

𝑠𝑇 
𝑖 
, 𝑖 ∈ 𝐈 𝑠 

)
Subject to 

∑𝑀 

𝑗=1 
𝑤 

𝑠 
𝑗 
= 1 (2) 

here I s is an index set that contains the indices of all training units

hose degradation stages are s . It is expected that the resulting ensemble

ith optimized degradation-dependent weights will optimally combine

he generalization capabilities of the member algorithms and achieve

obust RUL prediction. Given a pool of a large number of prognostic

lgorithms, solving the weight optimization problem in Eq. (2) would

llow an optimal selection of prognostic algorithms from the pool to be

sed in the online testing phase. This is because larger weights asso-

iated with a degradation stage are likely to be assigned to algorithms

hat produce higher prognostic accuracy and diversity in the stage, while

ear-zero weights associated with the degradation stages are likely to be

ssigned to algorithms that perform significantly more poorly than other

lgorithms in the stage. 

.3. Online testing phase 

.3.1. Identification of degradation stages for online testing units 

Upon the determination of the stage-boundary B in the offline phase

see Section 3.2.1 ), the degradation stage of an online testing unit y t can

e identified based on the most recent filtered VHI value. Specifically,

WR is first performed on the VHI data of y t to generate a filtered VHI-

ycle curve; then, the filtered VHI value at the current cycle is compared

ith B to determine the degradation stage that y t belongs to. Once the

egradation stage s t is determined for y t , the weights w 

s t associated with

 t can be used to produce an ensemble-predicted RUL with a weighted-

um formulation. 

It is worth distinguishing between operation conditions and degrada-

ion stages. Operation conditions are a set of conditions (e.g., tempera-

ure, pressure, and current) under which an engineered system operates;

 degradation stage is defined as a period of time when the health condi-

ion of an engineered system stays in a certain range (i.e., in terms of the
5 
ltered VHI value). Operation conditions often affect the degradation

ate of a system and thus how fast the system transitions from one degra-

ation stage to another. As long as the individual prognostic algorithms

n an ensemble can handle static and varying operation conditions in

UL prediction, the proposed ensemble learning-based prognostic ap-

roach should also be capable of dealing with time-dependent degra-

ation due to both static and varying operation conditions. It should

e noted, however, that the focus of this paper is to accurately pre-

ict the RUL of an engineered system by accounting for the effects of

ime-dependent degradation rather than those of varying operation con-

itions. 

.3.2. Formulation of ensemble prognostics with degradation-dependent 

eights 

The predicted RULs of an online testing unit y t by M member algo-

ithms are aggregated to generate the ensemble- predicted RUL for the

esting unit using the following weighted-sum formulation [12] : 

̂
 = 

𝑀 ∑
𝑗=1 

𝑤 

𝑠 𝑡 
𝑗 
𝐿̂ 𝑗 

(
𝐲 𝑡 , 𝐘 

)
(3) 

here y t denotes the measurement data from the online testing unit;
̂
 denotes the ensemble-predicted RUL for y t ; w j 

s t denotes the weight

ssigned to the j th prognostic algorithm associated with the degrada-

ion stage s t ; 𝐿̂ 𝑗 ( y t , Y ) denotes the predicted RUL by the j th prognostic

ember algorithm trained with the data set Y . Let the weight vector

 

s t = [ w 1 
s t , w 2 

s t ,…, w M 

s t ] T and the vector of predicted RULs by mem-

er algorithms ̂𝐋 = [ ̂𝐿 1 , 𝐿̂ 2 , … , 𝐿̂ 𝑀 

] T , the weighted-sum formulation in

q. (3) can be expressed in a vector form as 𝐿̂ ( 𝐰 

𝑠 𝑡 , ̂𝐋 ) = ( 𝐰 

𝑠 𝑡 ) T 𝐋̂ . 

It is noted that the computationally expensive process of training

ultiple prognostic algorithms is carried out in the offline phase (see

ection 3.2 ) and the process of predicting the RUL of an online testing

nit with the multiple trained algorithms (see Eq. (3) ) requires a rel-

tively small amount of computational effort. Therefore, the proposed

nsemble prognostics method raises little concern for the computational

omplexity. Indeed, in many practical applications, prognostic accuracy

s often more important than computational complexity. This is because

he catastrophic failure of an engineered system often costs much more

han the effort to increase the computational power in the online phase.

t then follows that, in cases where an ensemble of prognostic algorithms

roduces a considerably more accurate prediction of RUL over any of

ts members, ensemble prognostics should always be preferred over the

se of any standalone algorithm. 

. Case 1: RUL prediction for aeroengine bearings 

In the first case study, the ensemble learning-based prognostic ap-

roach with degradation-dependent weights is used to predict the RUL

f an aeroengine bearing. The degradation data of the aeroengine bear-

ngs were generated from a crack-growth simulation model presented

n [44] . The proposed ensemble prognostics method with degradation-

ependent weights (EDD) is demonstrated using the crack-degradation

ata and compared with the original ensemble prognostics method with

egradation-independent weights (EDI). 

.1. Description of bearing crack-growth data 

The phase space warping (PSW) [45] , which uses short-time refer-

nce model prediction error to measure small deteriorations in the phase

pace of a fast-time subsystem, can be used to develop a linear relation-

hip between a damage tracking metric (e.g., the change in the direction

f a phase space trajectory) and the length of a crack [44] , expressed as

 = 𝛼𝑧 (4)

here x is the damage tracking metric estimated by PSW, z is the crack

ength, and 𝛼 is a constant coefficient. As a result, the tracking metric
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Fig. 3. The distribution of the FPT values of the 218 training units. 
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 can be used as the health indicator (or health index) for RUL estima-

ion. Considering that the tracking metric x is proportional to the crack

ength, and in theory the crack propagation often consists of one slow-

rowth and one rapid-growth degradation stages, a simulation model

44] can be established to describe the propagation of x in an aero-

ngine bearing as 

 = 

{ 

(0 . 002 𝑡 + 1)∕10 + 0 . 01 ∗ 𝜆, 𝑡 ≤ 𝜅

𝛽𝑡 ∕10∕ 𝛾 + 0 . 01 ∗ 𝜆, 𝑡 > 𝜅
(5)

here t denotes the operation cycles of the bearing; 𝜆 is a normally

istributed random number, describing the measurement noise; 𝜅 de-

otes the first predicting time (FPT) that defines the changing point of

he bearing degradation stages; 𝛽 and 𝛾 are constant coefficients. The

imulation model in Eq. (5) represents the damage prorogation charac-

eristics at the slow-growth stage ( t ≤ 𝜅) and rapid-growth ( t > 𝜅) stage

f a bearing. 

In [44] , a set of parameters was selected to simulate the tracking met-

ic x of a bearing unit ( 𝛽 = 1.04, 𝛾 = 1821.96 and 𝜅 = 200). In this paper,

he simulation data collected from bearing units with diverse propaga-

ion characteristics of tracking metrics were used to demonstrate the

nsemble learning-based prognostic approach. Note that in Eq. (5) the

PT determines the time when the damage propagation process of a

earing unit falls into the rapid-growth degradation stage. Different FPT

alues result in dramatically different crack propagation characteristics.

ence, 218 randomly generated FPTs (see Fig. 3 ) were used to produce

egradation data for 218 training bearing unis. The values of FPT range

rom 121 to 251 cycles. Moreover, the model coefficients 𝛾 for the 218

earing units were randomly generated from a uniform distribution be-

ween 1472 and 2172. Fig. 4 (a) depicts the tracking metric curves of

our training bearing units. As shown in Fig. 4 (a), the degradation pro-

esses of the four units are significantly different due to their different

PTs. Fig. 4 (b) shows the tracking metric curves of all 218 training bear-

ng units. The red dots in Fig. 4 (b) show the tracking metrics of the 218

raining units, plotted against the adjusted cycle number that is defined

s the subtraction of the cycle-to-failure of a training unit from the ac-

ual operational cycle of the unit. The blue curves in Fig. 4 (b) represent

he LWR-fitted curves for the 218 training bearing units. 

In addition to the training data sets, another 218 testing bearing

nits were simulated using Eq. (5) with similar parameter settings as

he training units, and the tracking metric curve of each testing unit

as truncated at some cycle prior to the end of life (EOL) cycle when a

ystem failure occurred (i.e., failure threshold was 1.0 in this case). 
6 
.2. Optimization of degradation-dependent weights 

The proposed ensemble prognostics method described in Section 3 is

emonstrated using the bearing data sets. Two prognostic algorithms

ere selected as the member algorithms of the ensemble prognostics

ethod. One was a data-driven algorithm, i.e., the similarity-based

nterpolation (SBI) approach [38] with the relevance vector machine

RVM) [40] (RS); and the other one was a model-based algorithm,

.e., the particle filter (PF) [46] . Based on our previous study on en-

emble prognostics [12] , a 10-fold CV was used in the optimization of

egradation-dependent weights for each degradation stage. The 10-fold

V involved partitioning the training data set into 10 mutually exclu-

ive subsets, training a predictive model on nine subsets (or CV-training

et), and validating the predictive model on the remaining subset (or

V-testing set). The process of generating synthetic CV-testing units in

 CV-testing set is detailed in steps 1–4. 

Step 1 : Define the degradation stages (see Section 3.2.1 ). It can

e seen that the LWR-fitted curves in Fig. 4 (b) can be divided into

wo degradation stages, separately by a constant tracking metric value

0.145). These two stages correspond to the slow-growth and rapid-

rowth degradation stages of the bearing cracks. 

Step 2 : Generate partial degradation data via truncations of run-to-

ailure training bearing data sets (see Section 3.2.2 , Step 1). Since there

ere 218 training units, we truncated each unit once in each degrada-

ion stage to generate 218 CV-testing units in each stage. The full run-

o-failure tracking metric curve of each training unit was truncated at a

re-assigned RUL that was randomly chosen within the full cycles of that

raining unit. For example, assume that the EOL cycle of a training unit

s 200. The pre-assigned RUL for this unit is then randomly generated

rom a uniform distribution on the RUL interval [0, 200]. Let us further

ssume this pre-assigned RUL takes a value of 150. Then, the cycle num-

er for the pre-assigned RUL can be computed by subtracting the RUL

rom the EOL cycle as 50 ( = 200 − 150). As a result, a CV-testing unit

ith a pre-assigned RUL (150 cycles) and 50 cycles of tracking metric

ata is generated from this training unit. In this case study, the numbers

f the CV-testing units whose LWR-fitted curves partially fall into the 2

tages are 218 and 218, respectively. 

Step 3 : Perform the 10-fold CV on the 218 CV-testing units in each

tage (see Section 3.2.2 , Step 2). Two prognostic algorithms (i.e., RS and

F) were used to predict the RUL of each CV-testing unit. For instance,

n the first CV trial in stage 1, the complete (run-to-failure) tracking

etric measurements from the first 198 units (i.e., subsets 1–9) were

sed as the training data, and the partial tracking metric measurements

runcated from the remaining 10 (CV-testing) units as the testing data.

o in the 10 CV trials, each of the 218 CV-testing units in this stage was

ested by once. 
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Fig. 4. The tracking metric curves of (a) 4 bearing units and (b) 218 bearing units. 

Table 2 

Degradation-dependent ( w 

1 − 2 ) and degradation-independent ( w ) weights. 

Weight vector RS PF 

w 

1 0.5950 0.4050 

w 

2 0.0239 0.9761 

w 0.5876 0.4124 
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Step 4 : Optimize the degradation-dependent weights by minimizing

he CV error for each stage (see Section 3.2.3 ). The CV error used in this

ase study is measured with an asymmetric score function around the

rue RUL such that greater penalties are applied on late predictions than

arly ones [12,39] . The score evaluation metric 𝜀 SC can be expressed as 

 SC 

(
𝐿̂ 𝑖 , 𝐿 

𝑇 
𝑖 

)
= 

{ 

exp 
(
− 𝑑 𝑖 ∕13 

)
− 1 , 𝑑 𝑖 < 0 

exp 
(
𝑑 𝑖 ∕10 

)
− 1 , 𝑑 𝑖 ≥ 0 

where 𝑑 𝑖 = 𝐿̂ 𝑖 − 𝐿 

𝑇 
𝑖 

(6) 

here 𝐿̂ 𝑖 and L i 
T denote the predicted and true RULs of the i th CV-

esting unit, respectively. This score function was used to compute,

or each degradation stage, the CV errors by the member algorithms

nd that by an ensemble model (see 𝜀 CV 
s in Eq. (1) ) for a given set

f degradation-dependent weights. For stage 1, the RUL predictions of

he 104 CV-testing units by RS and PF were used to evaluate the CV

rror in the stage, and the weight optimization was implemented to

dentify an optimum set of algorithm weights that minimized the CV

rror. In this study, the weight optimization problem in Eq. (2) was

olved using a sequential quadratic optimization (SQP) method, which

s a gradient-based optimization technique. We then repeated this pro-

edure to obtain the optimized weights for stage 2. We finally obtained

 weight vectors w 

1-2 for stages 1 and 2, respectively. Table 2 sum-

arizes the degradation-dependent weights ( w 

1-2 ) and degradation-

ndependent weights ( w ), where the weight vector w was calculated

y minimizing the overall CV error of the 436 ( = 218 + 218) CV-testing

nits. 

.3. RUL prediction results 

.3.1. Ensemble prediction on CV-Testing units 

After calculating the degradation-dependent weight vectors, the en-

emble prediction result of each stage can be calculated using the

eighted-sum formulation in Eq. (3) . Table 3 compares the RUL pre-

iction errors on the initial 436 CV-testing units by EDI and EDD. It can

e seen from the table that the prediction error generated by EDD was

maller than that of EDI at both stages 1 and 2, and the prediction im-

rovement in stage 2 was 58.50%. This resulted in a 1.35% reduction
7 
n the overall CV error that was computed with all the 436 CV-testing

nits. Fig. 5 manifests the predictions of RS, PF, EDI and EDD on the

nitial CV-testing units. The units are sorted by their RULs in an ascend-

ng order. As shown in Fig. 5 , the prediction accuracy was significantly

mproved by the two ensemble learning-based prognostic approaches

EDI and EDD) when compared with PF and RS (whose overall CV er-

ors were 99.5910 and 22.6437, respectively). More importantly, EDD

utperforms EDI in stage 2 (see Fig. 5 (b)). 

In order to validate the performance improvement by the proposed

nsemble prognostics method, we independently generated another set

f synthetic CV-testing units (i.e., repeated 436 CV-testing units) by ran-

omly truncating the tracking metric curves of the 218 training units.

he 10 CV trials were repeated with repeated CV-testing, and the weight

ectors ( w 

1-2 and w ) obtained from the initial CV (see Table 2 ) were

sed to compute the CV errors by EDI and EDD. Fig. 6 shows the predic-

ion of RUL on the CV-testing units using RS, PF, EDI and EDD methods.

s shown in Table 3 , the proposed EDD method outperforms the origi-

al EDI method on the repeated CV-testing units. The CV errors of EDD

ere reduced in stages 1 and 2 against EDI. It should also be noted

hat the prediction errors by both EDD and EDI in stage 2 are much

maller than those in stage 1 (see Table 3 and Figs. 5 (b) and 6(b)). This

an be attributed to two performance factors associated with RS and

F (i.e., the two member algorithms of EDD and EDI). First, RS, as a

ata-driven method, is generally more accurate given a larger number

f measurements in CV-testing data because more measurements often

rovide more important/accessible information about the distinct char-

cteristics of the degradation. Thus, the prediction accuracy of RS is

elatively low in stage 1 (see Figs. 5 (a) and 6(a)), where the tracking

etric measurements from a CV-testing unit are limited. As the mea-

urement length of CV-testing data increases in stage 2, the prediction

ccuracy of RS also increases. Second, PF, as a model-based method, is

ypically more effective when making predictions for a relatively short

ime frame ahead. In stage 1, PF is not as effective as that in stage 2

ecause the time frame in which predictions need to be made in stage 1

s longer than stage 2. Since both RS and PF make better predictions in

tage 2 than stage 1, the prediction results of the ensemble prognostics

ethods (EDD and EDI) are also more accurate in stage 2 than stage 1.

It should be noted that in Fig 6 the overall CV errors of RS and PF

ere 18.6050 and 74.2787, respectively. This result is consistent with

he observations from Table 3 and Fig. 5 . In addition, the ensemble prog-

ostics methods (EDI and EDD) outperform the individual member al-

orithms as expected. Moreover, as shown in Table 3 and Figs. 5 and 6 ,

he performance of EDD is similar to that of EDI in stage 1, while EDD

utperforms EDI in stage 2. This is because EDI is designed to maximize

he overall prediction accuracy (over both degradation stages) by opti-
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Table 3 

CV-testing errors by the original (EDI) and proposed (EDD) ensemble prognostics methods. 

Degradation stage Range of current tracking metric Initial CV-testing Repeated CV-testing 

Units No. S /EDI S /EDD Units No. S /EDI S /EDD 

1 [0, 0.145] 218 25.0754 25.0685 218 24.5524 24.1371 

2 [0.145, 1] 218 1.4758 0.6124 218 1.4708 1.1255 

Overall [0, 1] 436 13.2756 13.0970 436 13.0563 12.8040 

Fig. 5. RUL predictions on initial CV-testing units: (a) member algorithms, and (b) ensemble learning-based methods. 

Fig. 6. RUL predictions on repeated CV-testing units: (a) member algorithms, and (b) ensemble learning-based methods. 
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Fig. 7. RUL predictions on validation units using EDD and EDI methods. 
izing the weights of RS and PF. As shown in Figs. 5 and 6 , because the

rediction accuracy of both RS and PF was much worse in stage 1 than

tage 2, in the weight-optimization process EDI has made much larger

ffort in obtaining satisfactory prediction performance in stage 1 than

t did in stage 2 in order to maximize the overall prediction accuracy.

s a result, the weight vector w was not optimum for stage 2. On the

ther hand, EDD adopted a local optimization strategy for individual

egradation stages such that the optimal prediction performance can be

chieved for each stage. 

.3.2. Testing data set for performance validation 

In order to evaluate the robustness of the proposed ensemble prog-

ostics method (EDD), the 218 testing bearing units were used to exam-

ne its prediction performance. The validation process is summarized in

able 4 . Table 5 and Fig. 7 depict the validation results on the 218 test-

ng data sets. The units are sorted by the RULs in an ascending order in

ig. 7 . In the validation, there were 118 and 100 units in stages 1 and

, respectively. As can be seen in Table 5 , the prediction error of EDD
8 
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Table 4 

Procedure of the validation process. 

Step 1 Classify the degradation stage of each testing units into the two stages based on the filtered tracking metric curve. 

Step 2 Perform the 10-fold CV to obtain the estimated RULs of the 218 testing units using RS and PF. The prediction matrixes ̂𝐋 𝒔 ( 𝑠 = 1 and 2 ) , correspond to the two 

degradation stages, respectively. 

Step 3 Implement the weighted-sum formulation ( Eq. (3) ). By multiplying the weight vector w 

s in Table 2 with ̂𝐋 𝒔 ( 𝑠 = 1 , 2 , and 3 ) , the ensemble prediction for each 

degradation stage can be obtained . 
Step 4 Calculate validation errors of the proposed ensemble prognostics method (EDD). 

Step 5 Compare the proposed ensemble (EDD) with the original ensemble (EDI). The weight vector w in Table 2 is used for the EDI ensemble. 

Table 5 

Prediction errors in the validation. 

Degradation stage Range of current tracking metric No. of CV-testing units Prediction error (score function) 

RS PF EDI EDD 

1 [0, 0.145] 118 34.8475 557.2365 13.9044 13.8592 

2 [0.145, 1] 100 1.7425 0.3908 0.7717 0.3787 

Overall [0, 1] 218 19.6617 301.8027 7.8802 7.6755 
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n stage 1 is comparable to EDI prediction results while in stage 2 and

verall are smaller than that of EDI with the improvements of 50.93%,

nd 2.60%, respectively. The improvement in stage 2 was larger than

hat in stage 1, which was consistent with that obtained in the CV-

esting. In addition, both the EDD and EDI ensemble methods improved

he prediction precision dramatically over the individual member algo-

ithms. These observations are consistent with the prediction results in

able 3 , which suggests strong robustness ability of the proposed en-

emble (EDD). 

. Case 2: RUL prediction for aircraft engines 

.1. Description of engine performance simulaton data 

In the second case study, the ensemble learning-based prognostic ap-

roach with degradation-dependent weights is used to predict the RUL

f an aircraft engine. The prognostic data sets provided for the 2008

EEE PHM Data Challenge Competition consist of multivariate time se-

ies signals that are collected from engine dynamic simulations [39] .

he objective of this data challenge competition was to predict the RUL

f an aircraft engine that operates under six different flight conditions.

he data sets were generated by an aero-propulsion system simulator,

-MAPSS, for developing, testing, and validating data-driven prognos-

ic algorithms. The scenario developed for the challenge data tracks 536

ircraft engine units throughout their usage history. The prognostic data

t each operation cycle of each engine unit include the unit ID, cycle in-

ex, the values of 3 operation-condition parameters (i.e., altitude, match

umber, sea-level temperature), and the values of 21 sensor measure-

ents. The 3 operation-condition parameters have substantial effects on

he engine performance and degradation, and an engine unit may op-

rate under varying operation (or flight) conditions that fall within six

nique combinations of the operation-condition parameters [39] . The

ensor measurements typically include noise. The main sources of the

oise are manufacturing and assembly variations, process noise, and

easurement noise. More details about how the noise is modeled can

e found in [39] . In the case study, 536 data sets were divided into

raining and testing data sets, each with 218 data sets. In the training

ata set, each engine unit ran from its initial health condition to a sys-

em failure; and in the testing data set, the time series signals of each

nit were truncated at some cycle prior to the EOL cycle when a system

ailure occurs. 

.2. Fundamentals and implementations of member algorithms 

Five prognostic algorithms were selected as member algorithms in

he ensemble. These five algorithms include: 

1. The SBI with RVM (RS) [38,40] ; 
9 
2. SBI with SVM (SS) [38,41] ; 

3. SBI with the least-square exponential fitting (ES) [38] ; 

4. Bayesian linear regression with the least-square quadratic fitting

(QB) [42] ; and 

5. Recurrent neural network (RNN) [43] . 

The virtual health index (VHI) [38] was used as a data pre-processing

cheme for the first four algorithms, while a simple normalization

cheme is used for the last algorithm. The selection of the member algo-

ithms and the use of the VHI were motivated by the previous work on

nsemble prognostics [12] . Based on the results in [12,38] , seven most

nformative sensory signals among the 21 sensor signals were selected

o construct a transformation matrix T and compute the VHI [38] when

sing the first four member algorithms (RS, ES, SS and QB). The con-

truction of the virtual health index (VHI) explicitly considers the vary-

ng operation conditions (or flight) by taking the condition index as an

dditional input during data pre-processing. RNN uses 21 normalized

ignals. More details on the parameter settings for these five member

lgorithms can be found in [12] . 

.3. Optimization of degradation-dependent weights 

The optimization of the degradation-dependent weights expressed

n Eq. (2) requires the evaluation of the CV error for each degradation

tage. The process of generating synthetic CV-testing units is detailed in

teps 1–4. 

Step 1 : Calculate the VHI values of the 218 training units. A linear

ata transformation method with the matrix T was used to transform

he multi-dimensional sensor signals to one-dimensional VHI [38] . The

ed dots in Fig. 8 show the calculated VHI data of the 218 training units,

lotted against the adjusted cycle number that is defined as the subtrac-

ion of the cycle-to-failure of a training unit from the actual operational

ycle of the unit. 

Step 2 : Perform LWR on the VHI data for each of the 218 train-

ng units to obtain their fitted VHI curves (see Section 3.2.1 ). The blue

urves in Fig. 8 represent the VHI curves for the 218 training units. 

Step 3 : Define the degradation stages (see Section 3.2.1 ). In this ex-

mple, the VHI range was divided into 3 stages: [0.7, 1.2] (stage 1),

0.4, 0.7] (stage 2), and [ − 0.2, 0.4] (stage 3). In stage 1, the training

nits are relatively healthy and generally exhibit low degradation rates.

n stage 2, the training units deteriorate more rapidly, and exhibit severe

egradation. In stage 3, the degradation of the training units continues

o accelerate, meaning that these units tend to fail. The boundaries be-

ween these three stages are shown in Fig. 8 using the black horizontal

ines. In this case study, the numbers of the training units whose fil-

ered VHI curves partially fall into the 3 stages are 127, 202 and 218,

espectively. 
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Table 6 

CV-testing errors by member algorithms for each degradation stage. 

Degradation stage Range of current VHI No. of CV-testing units CV-testing error (score function) 

RS ES SS QB RNN 

1 [0.7, 1.2] 127 27.1590 22.0642 23.2310 42.4690 63.8269 

2 [0.4, 0.7] 202 10.0675 8.1175 8.7331 718.3503 63.5937 

3 [ − 0.2, 0.4] 218 1.8242 1.5362 1.5739 124.3239 2.1903 

Fig. 8. VHI curves from locally weighted regressions on the VHI data of the 218 training 

units and the degradation stage classification. 
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Table 7 

Degradation-dependent ( w 1-3 ) and degradation-independent ( w ) weights 

of member algorithms obtained from optimization-based weighting. 

Weight vector RS ES SS QB RNN 

w 

1 0.0000 0.7011 0.0000 0.2351 0.0638 

w 

2 0.0251 0.8302 0.0000 0.1323 0.0123 

w 

3 0.0000 0.4078 0.2735 0.0000 0.3187 

w 0.0000 0.8068 0.0000 0.1226 0.0706 
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Step 4 : Generate partial degradation data via truncations of run-

o-failure VHI data (see Section 3.2.2 ). These partial degradation data,

long with the true RULs, constituted the CV-testing units. The genera-

ion of the partial degradation data was performed for each degradation

tage by truncating the full run-to-failure VHI data at pre-assigned RULs.

or example, assume that the VHI data of a training unit that falls into

tage 1 corresponds to a minimum RUL of 100 cycles and a maximum

UL of 250 cycles (i.e., the EOL cycle of the unit). The pre-assigned RUL

or this unit is then randomly generated from a uniform distribution on

he RUL interval [100, 250]. Let us further assume this pre-assigned

UL takes a value of 180. Then, the cycle number for the pre-assigned

UL can be computed by subtracting the RUL from the EOL cycle as

0 ( = 250 − 180). As a result, a CV-testing unit with a pre-assigned RUL

180 cycles) and 70 cycles of VHI data is generated for stage 1. Since

ne CV-testing unit was generated from one training unit for each stage,

he number of the CV-testing units for each stage was the same as that

f the training units whose VHI data partially fall into the stage. 

Once the CV-testing units are generated, the next step is to determine

he degradation-dependent weights by minimizing the CV error for each

tage (see Section 3.2.3 ). In this case study the 10-fold CV is used to

valuate the prediction error. In the 10-fold CV process, five prognostic

lgorithms (i.e., RS, ES, SS, QB, and RNN) were used to predict the RUL

f each CV-testing unit in each stage. The score evaluation metric 𝜀 SC 

n Eq. (6) was used here to measure the CV errors. Table 6 summarizes

he CV errors produced by the member algorithms for each degradation

tage. 

Once the CV-testing errors are computed, degradation-dependent

eights need to be optimized to minimize the error in each stage. For ex-

mple, in stage 1, the RUL predictions of the 127 CV-testing units by the

ember algorithms (i.e., 127 predicted RULs from each algorithm) were

sed to evaluate the CV error in the stage, and the weight optimization

as implemented to identify an optimum set of algorithm weights that

inimized the CV error. The weight optimization problem in Eq. (2) was

hen solved using SQP. We then repeated this procedure to obtain the

ptimized weights for stages 2 and 3. We finally obtained 3 wt vectors
10 
 

1-3 for stages 1–3, respectively. Table 7 summarizes the degradation-

ependent weights ( w 

1-3 ) and degradation-independent weights ( w ),

here the weight vector w was obtained by minimizing the overall

V error considering the CV-testing unis from all three stages (i.e.,

27 + 202 + 218 = 547 CV-testing units). 

.4. RUL prediction results 

.4.1. Initial CV for weight optimization 

After obtaining the degradation-dependent weight vectors, the en-

emble prediction result of each stage can be calculated using the

eighted-sum formulation in Eq. (3) . Table 8 compares the RUL predic-

ion errors on the CV units by the original ensemble (EDI) and the pro-

osed ensemble (EDD). As can be seen in the table, the proposed method

EDD) produced smaller CV errors than the original method (EDI) at

ll the degradation stages, and the error reductions were respectively

.81%, 0.77% and 17.81% for stages 1, 2 and 3. This resulted in a 2.88%

eduction in the overall CV error that was computed with all the 547

V-testing units. It was expected for EDD to achieve a reduction in the

V error at each stage, since the optimization of degradation-dependent

eights (EDD) was performed separately for different stages while that

f degradation-independent weights (EDI) was performed once for all

tages (i.e., EDD could tune a larger number of weights for minimizing

he CV errors than EDI). 

.4.2. Repeated CV for performance validation 

In order to validate the performance improvement by the proposed

nsemble prognostics method, we independently generated another set

f synthetic CV-testing units (i.e., the CV-validation data set) by ran-

omly truncating the VHI curves of the 218 training units. The 10 CV

rials were repeated with the CV-validation data set, and the weight vec-

ors ( w 

1-3 and w ) obtained from the initial CV (see Table 7 ) were used

o compute the CV errors by EDI and EDD. This repeated CV allowed

he performance of EDI and EDD to be evaluated with a data set that

as not used to optimize the weights for these two methods. Tables 5

nd 6 summarize the CV errors on the CV-validation data set. In Table 9 ,

he CV-validation errors of the five member algorithms are provided. As

an be seen in Table 5 , the CV error of RNN is the largest in stage 1

nd in Stages 2 and 3 the worst is QB. The SBI-based algorithms (i.e.,

S, ES and SS) provide accurate and stable prediction performance on

he CV-validation data set. It can be noticed that RNN performs good in

tage 3. These observations indicate the algorithm diversity. 

In Table 10 , it can be seen that the CV-validation errors by the origi-

al (EDI) and proposed (EDD) ensemble prognostics methods are similar

o the CV-testing errors in Table 8 . The proposed ensemble (EDD) out-

erforms the original ensemble (EDI) with respect to the RUL prediction

ccuracy. It should be noted that the weight vectors ( w 

1-3 and w ) ob-

ained from the initial CV were used in the CV-validation. Therefore, the
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Table 8 

CV-testing errors by the original (EDI) and proposed (EDD) ensemble prognostics methods. 

Degradation stage Range of current VHI No. of CV-testing units CV-testing error (score function) 

EDI EDD 

1 [0.7, 1.2] 127 19.8633 19.5041 

2 [0.4, 0.7] 202 6.5542 6.5038 

3 [ − 0.2, 0.4] 218 1.6841 1.3841 

Overall [ − 0.2, 1.2] 547 7.7033 7.4814 

Table 9 

CV-validation errors by member algorithms for each degradation stage. 

Degradation stage Range of current VHI No. of CV-validation units CV-validation error (score function) 

RS ES SS QB RNN 

1 [0.7, 1.2] 127 26.3345 23.7835 22.7590 45.2030 101.1577 

2 [0.4, 0.7] 202 7.3480 5.7521 6.8246 408.6608 60.5555 

3 [ − 0.2, 0.4] 218 2.0100 1.6208 1.6855 114.2616 3.8403 

Table 10 

CV-validation errors by the original (EDI) and proposed (EDD) ensemble prognostics methods. 

Degradation stage Range of current VHI No. of CV-validation units CV- validation error (score function) 

EDI EDD 

1 [0.7, 1.2] 127 21.4760 20.8857 

2 [0.4, 0.7] 202 5.2844 5.1174 

3 [ − 0.2, 0.4] 218 1.8780 1.6033 

Overall [ − 0.2, 1.2] 547 7.6817 7.3738 

Table 11 

Procedure of the validation process. 

Step 1 Classify the degradation stage of each testing units into the three stages based on the filtered VHI curve. The stage of each unit is determined by the cycle 

number of the end point of the filtered VHI curve. 

Step 2 Estimate the RULs of the units in each stage using the five member algorithms. The prediction matrixes ̂𝐋 𝒔 ( 𝑠 = 1 , 2 , and 3 ) , correspond to the three 

degradation stages, respectively. 

Step 3 Perform the weighted-sum formulation ( Eq. (3) ). By multiplying the weight vector w 

s in Table 7 with ̂𝐋 𝒔 ( 𝑠 = 1 , 2 , and 3 ) , the ensemble prediction for each 

degradation stage can be obtained . 
Step 4 Calculate validation errors of the proposed ensemble method (EDD). 

Step 5 Compare the proposed ensemble (EDD) with the original ensemble (EDI). The weight vector w in Table 7 is used for the EDI ensemble. 

Step 6 Compare the ensemble prediction results of the proposed ensemble (EDD) with those in Ref. [12] . The weight vector w r obtained in [12] is used for the 

comparison, i.e., w r = [0.0000, 0.0470, 0.7462, 0.2068, 0.0000] T . 

Table 12 

Validation errors by the original (EDI) and proposed (EDD) ensemble prognostics methods. 

Degradation stage Range of current VHI No. of testing units Validation error (score function) 

EDI Ref. [12] EDD 

1 [0.7, 1.2] 85 10.6208 8.6481 8.0142 

2 [0.4, 0.7] 87 5.7869 5.7593 6.0105 

3 [ − 0.2, 0.4] 46 1.0845 1.1790 1.0703 

Overall [ − 0.2, 1.2] 218 6.6794 6.1955 5.7493 
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V-validation results demonstrate that the proposed ensemble (EDD) is

ffective and robust for RUL prediction improvement. 

.4.3. Testing data set for performance validation 

In order to highlight the effectiveness of the proposed ensemble

EDD) method, the 218 testing data sets of the 2008 IEEE PHM Data

hallenge were used to examine the EDD method. The time series sig-

als of the testing data sets were pruned some time prior to a system

ailure [12] . The objective of validation aims to evaluate the robust-

ess and precision of ensemble prediction improvement by utilizing the

egradation-dependent weights w 

1-3 (shown in Table 7 ) on the testing

ata sets. The validation process is introduced in Table 11 . 

Table 12 depicts the validation results on the testing data sets us-

ng ensemble prediction methods and Fig. 9 shows the prediction plot.

n the validation, there were 85, 87, and 46 units in stages 1–3, re-
11 
pectively. As can be seen in Table 12 , the validation errors of the pro-

osed ensemble (EDD) in stages 1, stage 2 and overall are smaller than

hat of the original ensemble (EDI). Although in stage 2 the best pre-

iction result is generated by [12] , the overall prediction precision of

he EDD ensemble is higher than that of the EDI ensemble. The reason

hy the proposed ensemble (EDD) is not better/as good to its competi-

ors in stage 2 is probably because of lacking sufficient testing units. A

mall number of the testing unit in this stage may limit the error dis-

ribution and diversity of the validation. Because in the CV-validation

n Section 4.4.2 the validation units in each stage is much more than

he testing units in this validation process and the proposed ensemble

EDD) achieved better prediction performance in all stages in the CV-

alidation, it is reasonable to believe that if the testing units in stage 2

ncrease the EDD ensemble will provide better prediction accuracy than

he EDI ensemble. Moreover, it is encouraging to see that the EDD en-
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Fig. 9. RUL predictions of 218 testing units for 2008 IEEE PHM Challenge Competition. 
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emble presents better RUL estimation than its competitors in stage 3

ven the number of testing units was only 46. This observation suggests

trong robustness ability of the proposed ensemble (EDD). Based on the

bove CV-validation and testing validation results, it can be safe to con-

lude that the proposed ensemble method (EDD) is effective and robust

or RUL prediction improvement in this case study. 

. Conclusions and future work 

In this paper, an ensemble learning-based prognostic approach with

egradation-dependent weights was introduced to account for the ef-

ects of time-dependent degradation on prognostic accuracy. This new

nsemble prognostics method classifies the degradation stages of an en-

ire degradation process using locally weighted linear regression, then

etermines the optimal degradation-dependent weights by minimizing

ross-validation training errors (only during offline training), and finally

ssigns the degradation-dependent weights to the member prognostic al-

orithms of an ensemble. To demonstrate the effectiveness of this new

ethod, two case studies were conducted to predict the RULs of an air-

raft bearing (Case 1) and an aircraft engine (Case 2). The experimental

esults have shown that this new method is capable of outperforming

he original ensemble prognostics method by accounting for the effects

f time-dependent degradation on prognostic accuracy. As mentioned

n Section 3.3.1 , the focus of this paper was to accurately predict the

UL of an engineered system by accounting for the effects of different

egradation stages over the entire system lifecycle instead of varying

peration conditions. Two specific objectives were (1) to classify (of-

ine) and identify (online) these degradation stages and (2) to identify

offline) and deploy (online) optimal weights for the member algorithms

f an ensemble at each of these stages. In the future, an adaptive weight

ptimization algorithm will be developed to partition the entire degra-

ation process into multiple degradation stages more accurately. 
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