
lable at ScienceDirect

Journal of Cleaner Production 241 (2019) 118289
Contents lists avai
Journal of Cleaner Production

journal homepage: www.elsevier .com/locate/ jc lepro
Mathematical modeling and multi-attribute rule mining for energy
efficient job-shop scheduling

Liping Zhang a, Zhixiong Li b, c *, Grzegorz Kr�olczyk d, Dazhong Wu e, Qiuhua Tang a

a Key Laboratory of Metallurgical Equipment and Control Technology & Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,
Wuhan University of Science and Technology, Wuhan, 430081, China
b School of Engineering, Ocean University of China, Tsingdao, 266100, China
c State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300350, China
d Department of Manufacturing Engineering and Automation Products, Opole University of Technology, Opole, 45758, Poland
e Department of Mechanical and Aerospace Engineering, Department of Industrial Engineering and Management Systems, University of Central Florida,
Orlando, FL, 32816, USA
a r t i c l e i n f o

Article history:
Received 8 April 2019
Received in revised form
20 June 2019
Accepted 4 September 2019
Available online 5 September 2019

Handling editor: Yutao Wang

Keywords:
Dispatching rule
Energy consumption
Gene expression programming
Job-shop scheduling
Unsupervised learning
* Corresponding author. School of Engineering,
Tsingdao, 266100, China.

E-mail addresses: zhangliping@wust.edu.cn (L. Zh
edu (Z. Li), g.krolczyk@po.opole.pl (G. Kr�olczyk), Da
tangqiuhua@wust.edu.cn (Q. Tang).

https://doi.org/10.1016/j.jclepro.2019.118289
0959-6526/© 2019 Elsevier Ltd. All rights reserved.
a b s t r a c t

Manufacturing industry accounts for about one-third of the world's total energy consumption (TEC). This
study aims to develop a novel mixed-integer mathematical model to represent the direct energy con-
sumption of machines and indirect energy consumption on a shop floor. In comparison with traditional
modeling methods, this paper proposes an effective gene expression programming-based rule mining
(GEP-RM) algorithm to generate dispatching rules automatically. This method consists of three attributes
that have significant impacts on the TEC of a manufacturing process. In addition, diversified rule mining
operators with self-learning are designed to ensure population diversity and convergence. Moreover, a
perturbation trigger mechanism for reconstructing rules is introduced to avoid being trapped into a local
optimum. An unsupervised learning algorithm is achieved by setting the evolution direction with global
best and current worst in order to mine the value of the substantial historical data. Experimental results
have shown that the proposed multi-attribute rule mining approach outperforms other dispatching rules
in terms of energy saving and production efficiency.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Job-shop scheduling is one of themost critical issues in planning
and managing manufacturing processes (Ren and Wang, 2012).
Moreover, over the past few decades, global energy consumption
grows significantly. Particularly, the energy consumption in the
manufacturing sector, which accounts for nearly one-half of the
global energy consumption, has almost doubled over the last 60
years (Abdelaziz et al., 2011). For the manufacturing enterprises,
energy consumption constitutes a major portion of the total pro-
duction cost (Wang et al., 2011), and hence, energy saving pro-
duction becomes a key factor for their economic competitiveness
and the energy efficient Job-shop scheduling problem (EEJSP) has
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attracted considerable attentions.
Previous research related to reducing energy consumption has

primarily focused on developing more energy efficient machines
and processes (Fang et al., 2011a; Haapala et al., 2009; Diarra et al.,
2010). However, the energy required for machining operations is
often a relatively small part of TEC in a job shop. In this regard,
Gutowski et al. (2005) demonstrated that energy was consumed
even when the machine was idle since 85.2% of the consumed
energy was used in non-machining operations at Toyota. This
observation is also supported by Drake et al. (2006) who reported
that the consumed energy for removing materials from a part was
19% of the total consumed energy by the milling machine.
Draganescu et al. (2003) carried out statistical experiments con-
cerning machine tool efficiency and specific consumed energy.
Garg et al. (2015) investigated the relationship between energy
consumption and input process parameters, including cutting
speed, surface roughness, and tool wear rate. This study has shown
that the energy consumption partially depends on the machining
parameters such as cutting speed, feed rate and depth of cut.
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Mouzon et al. (Mouzon and Yildirim, 2008; Mouzon et al., 2007)
utilized a greedy randomized multi-objective adaptive search
meta-heuristic to minimize TEC and total tardiness on a single
machine. Dietmair and Verl (2009) optimized a complex
manufacturing system from four aspects, including time, quality,
cost and energy consumed. Fang et al. (2011b) presented a math-
ematical programming model for the flow shop scheduling that
considered peak power load, energy consumption, and associated
carbon footprint, and its effectiveness was validated by using a
simple case study. Diaz and Dornfeld (2012) studied a
manufacturing system from the aspects of cost and energy reduc-
tion. Dai et al. (2013) proposed an energy-efficient model for flex-
ible flow shop scheduling and used an improved genetic-simulated
annealing algorithm to obtain Pareto solutions. Christian et al.
(2016) developed a research framework for energy-efficient
scheduling to reduce energy consumption. Zhang and Chiong
(2016) introduced the objective of minimizing energy consump-
tion into a typical production scheduling model. They pointed out
that energy consumption of machine systems can also be reduced
by scheduling jobs on different machines without additional costs.

EEJSP has been investigated by a great number of researchers via
exact methods, dispatching rules or meta-heuristic algorithms (He
et al., 2015; He, Liu, Cao, Li, 2005). The exact methods including
branch and bound, can guarantee global convergence (Liu et al.,
2013). However, as the size of the problem increases, its compu-
tational time increases exponentially and the lower bound may not
be obtained during polynomial time. Hence, dispatching rules and
meta-heuristic algorithms attract growing attention from re-
searchers. The meta-heuristic algorithms, including genetic algo-
rithms (Gokan et al., 2015), teaching-learning-based optimization
algorithms (Lin et al., 2015), constructive heuristics (Mansouri et al.,
2016) and particle swarm optimization (Tang et al., 2015) have been
proven effective and efficient in searching high-quality solutions
during reasonable time (Ren and Wang, 2012), but they have not
been applied directly into real manufacturing for the lack of con-
venience and instantaneity.

Dispatching rules, also called heuristic approaches, are generally
used to select the jobs with high priority from a set of waiting jobs
to be processed. They have many advantages such as strong
implementability, satisfactory performance, low computational
requirement, and flexibility to incorporate domain knowledge and
expertise, and hence they are being commonly used in production
scheduling in industry. Most literatures have presented mathe-
matical programming models in the flow shop scheduling problem
or job-shop scheduling problem that considers energy consump-
tion (Liu et al., 2014), and have utilized the exact methods andmeta
heuristic algorithms (Yi et al., 2012; Lei and Guo, 2015) to solve the
model. However, Huang and Suer (2015) have demonstrated that
the dispatching rules are not very effective due to the lack of flex-
ibility. Since there are n! selections for n waiting jobs, it is difficult
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Fig. 1. Two different scheduling sche
to develop effective dispatching rules. In addition, little research
has been reported on the dispatching rules for energy efficient
scheduling problems.

To make manufacturing processes more environmentally sus-
tainable, effective and efficient dispatching rules for energy effi-
cient production scheduling are required. To address this issue, we
propose a Gene Expression Programming-based rule mining (GEP-
RM) algorithm that combines both artificial intelligence and swarm
intelligence to find the energy-efficient rules that achieve satis-
factory scheduling schemes of the energy efficient job-shops. The
main contribution of this work is as follows: multi-attributes
related to TEC are extracted from historical data and utilized in
the subsequent evolutions of GEP-RM algorithm. After a series of
rule mining with self-study and unsupervised learning on the
ground of substantial data, new multi-attribute rules are created
using the GEP-RM algorithm.

The remainder of the paper is organized as follows. Section 2
details two motivating examples. Section 3 describes the EEJSP
problem and formulates a new mix-integer mathematical model.
Section 4 presents the methodology of mining multi-attribute rules
via GEP-RM algorithm. Section 5 reports and analyses the corre-
sponding results. In section 6, a general conclusion is drawn.

2. Motivating examples

In this section, we will present two motivating examples. In
real-world job shops, production managers often make scheduling
decisions based on their experience or empirical knowledge. This
research aims to explore a novel approach to supporting produc-
tion managers to make optimal decisions.

Makespan is a regular measure of the time-related performance
evaluation of scheduling decisions. It is worth noticing that the TEC
may present different states under the same makespan. For
example, four operations from two jobs, each of which have two
operations, are assigned to two machines. The parameters of the
operations are listed as follows: (1, 1, 2, 1, 3.5), (1, 2, 1, 3, 4), (2, 1, 1, 8,
4), and (2, 2, 2, 5, 6). The numbers in the brackets from left to right
represent job index, operation index, predefined machine index,
processing time and cutting power. The unload power of machines
1 and 2 are 1kw and 2kw respectively, and the coefficients of Stute
power and indirect energy consumption are 1.2 and 1.

As shown in Fig. 1, both scheduling schemes have the same
makespan. However, machine 2 in Fig. 1(a) relaxes between the
finishing time of job 1's first operation and the bnning time of the
job 2's second operation, resulting in large unload energy con-
sumption. Andmachine 2 in Fig. 1(b) starts to work only when both
operations can be performed continuously. The TEC contains two
parts: direct energy consumption and indirect energy consump-
tion. The direct energy consumptions of these two scheduling
schemes are 52.5kwh and 38.5kwh respectively. The indirect
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Fig. 2. Two different scheduling schemes under different makespans.
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energy consumption of these two scheduling schemes is 13kwh for
the same makespan. Thus the TEC of them is 65.5kwh and 51.5kwh
respectively. Obviously, the TEC in Fig. 1(a) is much greater than
that in Fig. 1(b). This means that reasonable scheduling schemes
can reduce the TEC. Under the circumstance of great unload energy
consumption, the idle time are expected to be reduced so as to
minimize the TEC.

Though the existing dispatching rules are simple and easy to
utilize, and have been used with increasing frequency in the pro-
cess of real production, their performance may show disagreement
and be not satisfactory for the target of saving energy in enter-
prises. Taking three jobs with each job having three operations as
an example, the parameters of each operation are listed as follows:
(1, 1, 2, 1, 3.5), (1, 2, 1, 3, 4), (1, 3, 3, 6, 5), (2, 1, 1, 8, 4), (2, 2, 2, 5, 6), (2,
3, 3, 10, 3.5), (3, 1, 3, 5, 5), (3, 2, 2, 4, 4), (3, 3, 1, 8, 6) and (3, 3, 1, 8, 6).
And the unload power of machines 1, 2, 3 are 1kw, 2kw and 4kw
respectively. The scheduling scheme adopted in Fig. 2(a) is the LPT
rule which selects the operation with the longest processing time
first, while that in Fig. 2(b) is the SPT rule which chooses the
operation with the shortest processing time first.

Apparently, the makespan in Fig. 2(a) is 2 h longer than that in
Fig. 2(b), and machine 1 in Fig. 2(a) and machine 3 in Fig. 2(b) work
continually while others operate continuously. Since the unload
power of machine 3 is four times that of machine 1, the TEC in
Fig. 2(a) is greater than that in Fig. 2(b). The direct energy con-
sumption (DEC) of these two scheduling schemes is 175.3kwh and
193.3kwh, respectively. The indirect energy consumption (IEC) of
them is respectively 29kwh and 27kwh. Thus, the TEC of them is
204.3kwh and 220.3kwh, respectively. This means dispatching
rules have a great effect on the TEC. Theremay exist certain suitable
dispatching rules reflecting the attributes of energy saving to be
explored. Subsequently, the GEP-RM algorithm was developed in
this study to find suitable dispatching rules to reduce the TEC.

3. Problem formulation

EEJSP is concerned with the assignment of operations of a job to
machines, which is subject to technological and capacity con-
straints (Branke et al., 2015), so as to achieve certain evaluation
criteria in terms of energy consumption. Technological constraints
define that each operation can be executed only after the comple-
ment of its precedent operations. Capacity constraints define that a
machine can perform the next operation unless it finishes the
earlier one. Thus, this problem can be described in details as
follows.

Assume a set of n jobs fi ¼ 1; 2; :::; ng with each job having a
set of jJij operations fj ¼ 1; 2; :::; jJijg on a set of m machines fk ¼
1; 2; :::; mg. Each job should pass through each machine once and
only once. Each machine can perform only one job at one time
without interruption (Sha and Lin, 2010). Thus, the total number L
of the sequenced operations can be calculated with L ¼ P

i
jJij.

Solving the EEJSP requires to seek for an optimal or near-optimal
sequence of these L operations to satisfy the TEC criterion. There-
fore, this problem is described by a triplet Jm|PC, PU|Emin.

Objective function: the objective function is to minimize the
TEC. The TEC falls into two categories: DEC and IEC. The DEC is
mainly used in the manufacturing process to execute the jobs
directly, such as the cutting process, while the IEC includes the
lighting and temperature maintaining. Let us assume that the IEC is
proportional to the running time of the shop floor (Yang et al.,
2014). Thus, the IEC can be described in Eq. (1).

IEC ¼ bCmax (1)

where, b is equal to 1.
DEC is measured by the total unload energy consumption of all

the machines (Zhang et al., 2013). The total unload energy con-
sumption of machine k, EUk, can be calculated by Eq. (2). Let us
further assume that the calculation of the total unload energy
consumption of machine k bns at the start of the first job and ends
at complement of the last job.

EUk ¼ða� 1Þ
Xn
i¼1

XjJij
j¼1

�
PCij,pij

�
þ PUk

Xn
i¼1

XjJij
j¼1

pij þ PUk,Itk (2)

where, a is equal to 1.2.
TEC is the sum of the total unload energy consumption of all the

machines and the indirect consumption, as shown in Eq. (3).

TEC¼DEC þ IEC ¼
Xm
k¼1

EUk þ IEC (3)

Therefore, the objective function is derived in Eq. (4).

minTEC¼
Xm
k¼1

0
@ða� 1Þ

Xn
i¼1

XjJij
j¼1

�
PCij,pij

�
þ PUk

Xn
i¼1

XjJij
j¼1

pij

þ PUk,Itk

1
Aþ b,Cmax (4)

The objective function can be achieved if and only if the
following constraints are fully satisfied.

Assignment constraints: Each operation Oij should be per-
formed exactly once and there exists only one task in each position
of the sequence which holds L operations.
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XT
t¼1

Yijt ¼ 1;cOij (5)

Xn
i¼1

Xj¼jJij

j¼1

Yijt ¼ 1;ct2T (6)

Precedence constraints: Due to the precedence relations be-
tween two operations in any job, each operation can be executed
unless its precedent operations are finished.

XT
t¼1

tYijt <
XT
t¼1

tYi;jþ1;t ;cOij;Oi;jþ1; j<

�����Ji
����� (7)

Machine constraints: For any two operations assigned to the
same machine, one operation can be started after the earlier one is
completely finished.

COij �COi0j0 � pi0j0 þM,
�
2�Yijt �Yi0j0t0

�
;cOij;Oi0j0 ; t < t0;mij

¼ mi0j0 (8)

Time sequence constraints: All L operations are considered to
be sequenced in an ascending order. Thus, the immediate following
operation in the sequence can start only after its preceding
operation.

COij � pij � COi0j0 � pi0j0 þM,
�
2�Yijt �Yi0j0;tþ1

�
;cOij;Oi0j0 ; t < L

(9)

Start time constraints: If an operation is assigned to one ma-
chine at sequence t, the start/completion time of this operation is
also regarded as the start/completion time of the machine that
performs the operation. If no operation is assigned to a machine at
sequence t, we assume that there is a virtual operation and the
completion time of this virtual operation is equal to the start time.

SMkt �COij � pij þM,
�
1�Yijt

�
; cOij;Mij ¼ k (10)

SMkt �COij � pij �M,
�
1�Yijt

�
; cOij;Mij ¼ k (11)

CMkt �COij þM,
�
1�Yijt

�
; cOij;Mij ¼ k (12)

CMkt �COij �M,
�
1�Yijt

�
; cOij;Mij ¼ k (13)

CMkt � SMkt þM,
�
1�Yijt

�
; cOij;Mijsk (14)

CMkt � SMkt �M,
�
1�Yijt

�
; cOij;Mijsk (15)

SMk;tþ1 � CMkt ; ck; t < L (16)

Idle time constraints: The idle time of a machine can be
calculated by Eq. (17).

Itkt ¼
8<
: SMk;tþ1 � CMkt ; if CMkt >0

0; if CMkt ¼ 0
ck; t < L (17)

Maximum completion time constraint: The maximum
completion time means the completion time of the last operation.

Cmax ¼ max
cOij

COij (18)

Thus, EEJSP is precisely definedwith objective function in Eq. (4)
and the constraints in Eqs. 5e18.

4. GEP-based multi-attribute rule mining algorithm

Gene expression programming is an evolutionary artificial in-
telligence technique developed by Ferreira (2002), and has been
used to address symbolic regression, time series prediction, clas-
sification, and optimization (Yang et al., 2016). Based on the genetic
process of biological organisms, the proposed GEP-RM algorithm
works with the population in which each individual is denoted as a
dispatching rule (Ferreira, 2001). This rule is represented as an
algebraic expression. Taking SPT as an example, its algebraic
expression is noted as min pt, in which pt means the processing
time. This expression schedules the next job with the minimum pt
from a set of waiting jobs.

In this study three attributes are extracted and embedded in the
form of terminal symbols into each rule. The population evolves via
rule mining operators including selection, mutation, transposition
and recombination. It should emphasize that the performance of a
rule is evaluated by the performance function (Goncalves et al.,
2005). Moreover, unsupervised learning of the rule performance
evaluation is achieved by setting evolution direction with global
best and current worst rules, so as to avoid the empirical combi-
nation of simple dispatching rules and overcome the shortcomings
of lacking response variables.

4.1. Computational framework

The flowchart of the GEP-RM algorithm is shown in Fig. 3. A set
of encoded solutions to the problem, called population, evolves via
rule mining operators. GEP-RM bns with the random generation of
the initial population. Then, each rule is evaluated to obtain its
performance value. The offspring are generated with the selection
mechanism that randomly chooses rules from the population with
probability. It is worth noting that the better rules have greater
chance to be selected. Subsequently, the offspring evolves via
mutation, transposition and recombination. The new population
will be evaluated again. The whole process is repeated until the
stopping criterion is reached.

4.2. Multi-attribute representation

The rule in GEP-RM consists of a linearly symbolic string with
fixed length composed of one or more genes (Ferreira, 2001). Here,
the character string is called the genotype of the rule, and the
mathematical formula represents the phenotype of the rule. The
genotype and phenotype are mutually dependent and can be
directly transformed into each other (Yang et al., 2016).

In Eq. (4) the TEC is closely related to the idle time of machines
(Itk) and makespan (Cmax). As well known, the idle time are
determined by the task assignment, while makespan is decided to a
large extent by predefined parameters called systematical attri-
butes. These attributes can be classified into two categories: the
job-related and machine-related. The job-related attributes often
include the processing time of an operation (pt), the number of
remaining unscheduled operations of a job (nr), and the sum of
remaining processing time (sr). The machine-related attributes
include the cutting power of each operation (PCij) and the unload
power of the machine (PUk). Because all these attributes are related
to energy consumption, it would be better to integrate them to
discover the dispatching rule.

Usually, dispatching rules produce scheduling schemes by uti-
lizing the known information. Considering that the job-related at-
tributes are known in this study while the machine-related
parameters are varying, only the job-related attributes are taken
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into account to discover the multi-attribute rules.
These attributes are combined into the GEP-RM algorithm

through the representation of symbols. There are two types of
symbol sets in gene representation: function symbol (FS) and ter-
minal symbol (TS) sets. FS and TS have a significant effect on the
learning ability of the GEP-RM algorithm (Nie et al., 2013). In this
study three job-related attributes fpt; nr; srg are defined as TSs
and five basic arithmetic operators fþ;�; *; =;g as FSs.

Suppose the character string of a rule is represented as ½ þ �
pt * pt nr sr nr pt �. The character string of the rule in
Fig. 4(a) can be converted to an equivalent expression tree (ET) as
shown in Fig. 4(b) using depth-first search mode. This ET form can
be expressed as a mathematical formula in Fig. 4(c).

A completed ET is the sufficient condition of formulating
mathematical expressions. To obtain a valid ET, the character string
of the rule is comprised of two parts, namely Head and Tail. Each
element in Head may be FS or TS while each element in Tail only
contains a TS. The lengths of both Head (h) and Tail (l) are fixed,
which can be calculated by Eq. (19) (Zhong et al., 2016).

l¼hðl� 1Þ þ 1 (19)

Where l is the maximum argument in the functions. Equation (19)
ensures the number of terminal symbols in Tail can satisfy the
requirement by Head in the worst case where all the symbols in
Head are function symbols. Thus, the validity of the generated ET is
obtained. As shown in Fig. 4, the maximum argument l ¼ 2, the
lengths of Head h¼ 4, and the lengths of Tail l¼ 5.
4.3. Scheduling scheme

A matrix w is selected to represent the scheduling job set. The
scheduling job set matrix is defined in Eq. (20) based on a sched-
uling problem which has 3 jobs and each job has 3 operations.
(b) Expression Tree

+
- sr

*
pt nr

pt

(a) Genotype

*pt pt nr sr nr pt *pt pt nr sr

(c) Phenotype

Head Tail

Fig. 4. Transformation from genotype to phenotype.
w ¼

0
BB@

O11ð3;1Þ O12ð2;2Þ O13ð4;3Þ
O21ð3;2Þ O22ð5;3Þ O23ð3;1Þ
O31ð3;3Þ O32ð2;1Þ O33ð3;2Þ

1
CCA (20)

WhereOijða; bÞ denotes that the processing time of operation Oij is a
and the candidate machine number is b. The rule decides the pri-
ority value of each candidate operations. Thus, the operation
sequence and machine selection are known in advance. However,
the starting and finishing time of each operation is undetermined.
The active schedule method is considered to generate the feasible
scheduling scheme. For example, a character string {pt þ pt e sr pt
sr nr nr} is given. Then the rule is denoted as pt. In order to mini-
mize the rule pt, the job sequence is�
O11 O12 O21 O31 O32 O33 O13 O22 O23

�
. Thus, the

starting and finishing time of each operation can be obtained via
active schedule method.

4.4. Rule mining

4.4.1. Selection
Popular selection techniques include roulette wheel selection,

rank-based selection, seed selection, tournament selection and so
on. These techniques can guarantee the survival and colonize the
best rules to produce a new generation. Tournament selection is
adopted in this study because it endows good rules with more
survival opportunity and balances the influence of super rules and
inferior rules (Gao et al., 2011). The rules are randomly chosen for
performance evaluation and the best rule is directly selected for the
next generation. Inferior rules are allowed into the next generation.
This step is repeated until the population size is met.

4.4.2. Mutation
Mutation tends to produce perturbations on current rules in

order to enrich the manifestation of rule population. Two types of
mutation (i.e., one-point mutation and flip mutation) are adopted
in this study. The mutation type is randomly chosen at each itera-
tion in the evolution. Different measures are designed for each
mutation to ensure the feasibility of mutated rules.

One-pointmutation replaces the symbol of one random position
by other symbols. A suitable criterion is required to ensure the
validity and completeness of the new rule. If the selected position
locates at the Head, its symbol can be replaced by any symbol from
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FS or TS. Otherwise, if the selected position is at the Tail, its symbol
can be replaced by any symbol from TS. Fig. 5(a) demonstrates the
mutation procedure, inwhich Position 2 is randomly selected as the
mutation point. As a result, symbol “-” is changed into “nr”.

Flip mutation implements the substring between two different
random head positions in reverse order. This mutation procedure is
demonstrated in Fig. 5(b). Positions 2e5 are randomly selected as
the mutation points. The substring between positions 2e5 is flip-
ped to generate a new child.

4.4.3. Transposition
The transposable elements are fragments of the genome that

can be activated by moving to other places (Ferreira, 2002). This
operator can activate invalid codes in the rule-mining process.
There are two kinds of transposition, called insertion sequence
transposition and root insertion sequence transposition. Insertion
sequence transposition randomly chooses a fragment with a
function or terminal at the first position, and then, transposes it to
the Head of the gene. As represented in Fig. 6(a), the fragment “
*pt nr ” is selected and inserted into the Position 2 in the Head. The
last three symbols in the Head are removed.

Root insertion sequence transposition randomly chooses a
fragment with a function at the first position, and then, transposes
it to the start of the gene. As shown in Fig. 6(b), the fragment “

*pt nr ” is selected and inserted into the start of the gene. Similarly,
the last three symbols in the Head are removed.

4.4.4. Recombination
Recombination permits exclusive recombination of mathemat-

ically concise blocks (Ferreira, 2001). This operator can keep the
favorable fragment into next generation and mine the superior
rules. There are two kinds of recombination. One is the one-point
recombination and the other is the two-point recombination.

In one-point recombination, one point is randomly chosen as
the recombination point. Two downstream fragments after this
recombination point from two rules are exchanged afterwards, as
shown in Fig. 7(a). In two-point recombination, two points are
randomly chosen as the crossover points. Two middle fragments
between the crossover points are exchanged, as depicted in
Fig. 7(b).

4.5. Rule performance evaluation

If and only if the rule performance evaluation is correctly
designed, the rule population can be evolved in the predetermined
direction (Yang et al., 2016). Essentially, the classical GEP is a su-
pervised learning method which gives a fixed set of input-output
pairs and enables the evolution function to fit the known input-
output pairs. The evaluation f measures the performance error on
the training or testing set. Because the job-shop scheduling is NP-
hard, it is difficult to find the optimal solution to minimize the
TEC; moreover, it is difficult to provide the optimal solution to train
each rule. Thus, an unsupervised learning is design to evaluate each
rule in the proposed GEP-RM algorithm.
* / *pt pt nr sr pt nr pt sr

* / *nr pt pt nr sr pt nr pt sr

Before 
Mutation

After
Mutation

Head Tail

Head Tail

1 2  3  4  5 6   7   8  9    10 11  12 13

(a) One-point mutation                        

Fig. 5. Two types
Assume that there are n training scenarios. The performance
value of rule j for all the scenarios is evaluated by

fj ¼
Xn
i¼1

Fij � Fi;min

Fi;max � Fi;min
(21)

where Fij denotes the TEC of the rule j at scenario i (i ¼ 1;2; :::;n and
j ¼ 1;2; :::;popsize), Fi;max means the worst rule for scenario i in the
current iteration, and Fi;min means the best rule for scenario i
through all iterations.

If the performance value of a rule is 0, this rule is near to the
global optimal solution for each training scenario. We also notice
that the performance value of each rule depends on the continu-
ously changes of current worst and global best rules, which may
result in different performance values for a rule with the same
character string in different iterations. Nevertheless, the best rule
remains the smallest performance value.

4.6. Rule mining perturbation

According to the rule performance evaluation in Eq. (21), the
rule performance value may change continuously, but the current
character string of the best rule may stay unchanged for several
generations. Thus, a perturbation of rule mining mechanism is
triggered if the current character string of the best rule stays un-
changed and the predefined maximum number is reached. Rules
are selected from the populationwith the given probability and are
then reconstructed randomly from scratch.

5. Results and discussions

In order to evaluate the performance of the proposed method,
experimental tests were implemented in Cþþ language on a PC
with Intel Core 2 Duo CPU 2.20 GHz processor and 2.00 GB RAM
memory.

5.1. Data description and parameter tuning

In this section, we choose 43 benchmarks about JSP including
three Fisher and Thompson benchmarks, and 40 Lawrence bench-
marks. Since the data about cutting power and unload power in
these benchmarks are not available, they are randomly generated
under the uniform distribution for further experiments. The values
of the cutting power for each operation on any machine and the
unload power of each machine are set as real number, and are
limited by U [3.5e6.5] and U [0.25e3], respectively, where U rep-
resents the uniform distribution. Meanwhile, eleven scenarios are
included for a given benchmark inwhich each scenario set with the
above method has a unique value of cutting power and unload
power. Hence, there are 473 scenarios in total. A training set con-
sists of 30 scenarios and the remained scenarios are used in testing
sets. Under this circumstance, the GEP-RM algorithm runs ten in-
dependent times over the given training sets and testing sets in
order to evaluate the robustness of the proposed approach.
1 2  3  4  5 6   7   8  9   10 11  12 13
/pt pt nr sr pt nr pt sr

/ pt pt nr sr pt nr pt sr
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mutation
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Mutation

Head Tail

Head Tail

                         (b) Flip mutation

of mutation.
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Fig. 6. Two types of transposition.
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Fig. 7. Two types of recombination.
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Note that, researchers have paid a large amount of attention to
these famous benchmarks for a long time and have obtained the
current best makespan or the lower bound. However, the optimal
solutions or lower bound for EEJSP have not been reported so far.
Thus, the rule performance evaluation with unsupervised learning
as mentioned above is applied here.

Before running the proposed algorithm, some parameters
should be determined in advance. After a serial of preliminary tri-
als, these parameters are verified and shown in Table 1.
5.2. Experimental results

In this section, the computational results of GEP-RM algorithm
are presented. Then, the new multi-attribute rules by GEP-RM al-
gorithm are discussed. Next, the performance of the proposed GEP-
RM algorithm is analyzed. Comparison experiments with the
classical dispatching rules are designed to test the performance of
the new multi-attribute rules; and, correlation analysis is also
performed to depict the relationship between the TEC and
makespan.

Fig. 8 reports the results of ten independent runs that contain
character strings and corresponding rules. In fact, utilizing any of
these discovered multi-attribute rules, all candidate operations are
endowed with different priorities, and the operation with the
highest priority is allocated first. This process is terminated until all
operations have been allocated. In this case, the schedule scheme
based on any of these rules is obtained. The TEC or other infor-
mation, such as makespan, the staring time and the completion
time of each operation, are also derived. These rules can be widely
used in the real production for their operability.
Table 1
Parameter tuning.

Parameter Setting

Population size 20
Number of iterations 50
Head size 6
Tail size 7
FS þ, -, � ,/, √
TS pt, nr, sr
Rule performance function
Pre-set value for rule mining perturbation 5
Maximum argument 2
It is noticed that rules (1, 5, 6, 7) are unique and appear different
from the others. Rules (4,8) have the same mathematical formula
but different character strings. Rules (2,3,9,10) show negative cor-
relation of the priority with the number of remaining unscheduled
operations of the job (nr), although the mathematical formula of
these rules exhibit minor difference. In sum, there are six rules from
ten independent runs. For convenience, we name rules 1, 5, 6 and 7
as GEPI, GEPII, GEPIII and GEPIV respectively, rules (4,8) as GEPV,
and rules (2,3,9,10) as GEPVI.

On the other hand, since the processing time of each operation
and remaining processing time of each job is longer than 1 h in
most scenarios, six rules display that the priority of the candidate
operations has positive correlation with the processing time of
operation (pt), and has negative correlation with the number of
remaining unscheduled operations of the job (nr). But the corre-
lation of the priority of the candidate operations and the sum of
remaining processing time of the job (sr) are sometimes positive
and sometimes negative.

The computational results of 473 scenarios are used to investi-
gate the performance of these new multi-attribute rules. Table 2
gives the TEC calculated by GEPV. To verify the statistical signifi-
cance of the problem size in the influence of TEC, we perform a one-
way analysis of variance (ANOVA) and report the results in Table 3.

As illustrated in Table 2, the TEC increases one or even two or-
ders of magnitude with the growth of the problem scale. On the
contrary, the TEC changes marginally with the same problem scale.
There are slight differences in different scenarios from the same
benchmark. Table 3 shows that the P value is close to 0. This is
means the problem size has the statistically significant influence on
the TEC. Hence, the problem size shows major impact on the TEC
while the processing time, cutting power and unload power owns
minor influence.

Essentially, the data sources of processing time, cutting power
and unload power obey a certain distributions. Though zero idle
time is the enterprises target, it is difficult to realize. This means
when the number of jobs increases, the unload time of the machine
grows longer and consequently the TEC continues to increase.
While, in the same problem scale, the difference in processing time,
cutting power and unload power causes slight difference in idle
time, and thus exerts insignificant influence on cutting energy
consumption and unload energy consumption.
Parameter Setting

One point mutation rate 0.1
Flip mutation rate 0.1
One-point recombination rate 0.2
Two-point recombination rate 0.2
Insertion sequence transposition 0.15
Root insertion sequence transposition 0.15
Pre-set value for selection 3
Pre-set rate for rule mining perturbation 0.3
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5.2.1. Statistical analysis of multi-attribute rules
Since the TEC differences among different scenarios are signif-

icantly large, the discovered multi-attribute rules are measured by
the performance criterion of Relative Percentage Deviation (RPD).
The RPD is calculated in Eq. (22).

RPD ¼ Hl;o � Hl;min

Hl;max � Hl;min
(22)

where Hl;o is the average value calculated by the oth rule for
benchmark l, Hl;min and Hl;max are the minimal and maximal
average values calculated by each discovered rules for benchmark l.

To investigate the statistical significance of the six new multi-
attribute rules, we perform an analysis of variance (ANOVA) and
report the results in Table 4. This analysis has a single factor which
is the multi-attribute rule with six levels. The response variable is
given by the RPD of every scenario, where SS is the sum of squares,
df is the degrees of freedom and MS is the mean square. A 95%
confidence interval is set to evaluate statistically significant dif-
ferences among the rules.

Table 4 shows the P value is equal to 0.0096 which is much
smaller than the significance level 0.05. This shows that the dif-
ference among all rules is statistically significant. To identify which
rule has a more important effect, pairwise multiple comparisons
are applied among group means by using the information in RPD.
Fig. 9 gives the multiple comparisons of the six new rules.

The multiple comparisons display the estimations of compari-
son intervals. As shown in Fig. 9, the means of groups GEPIV, GEPV,
GEPVI and group GEPI are significantly different. Hence, the results
suggest that if the raw data of GEPI are deleted, the rest rules may
be statistically insignificant. Under this circumstance, we take out
GEPI and the new ANOVA results show that the P value is equal to
0.8525, which is far greater than the significance level of 0.05. This
result demonstrates that GEPI performs worst and should be
deleted.

Meanwhile, the confidence intervals of GEPII, GEPIII, GEPIV, and
GEPVI are near to that of GEPV as shown in Fig. 9. The P value is
equal to 0.8525 without GEPI. In a statistical sense, GEPII, GEPIII,
GEPIV, GEPV and GEPVI are insignificant. In other words, the multi-
attribute rules GEPII, GEPIII, GEPIV, GEPV and GEPVI are similar in
solving these problems in the statistical sense.

From the perspective of mean RPD, the mean RPD of GEPI, GEPII,
GEPIII, GEPIV, GEPV and GEPVI are 0.66, 0.49, 0.46, 0.43, 0.41 and
0.43 respectively. GEPV with smaller RPD (0.41) is slightly superior
to other rules. Thus we will use GEPV as the representative rule to
further discuss the performance of the proposed GEP-RM
algorithm.
5.2.2. Performance evaluation
The proposed GEP-RM algorithm plays a critical role to find new

multi-attribute rules. Fig. 10 shows the convergence graph of rule
GEPV. The X-axis represents the number of iterations, and the Y-
axis represents the performance value calculated by Eq. (21).

In Fig. 10, one can note that the optimal performance value
changes irregularly as the number of iterations increases. This value
does not reduce continually or keep at a certain level. In fact, the
rule performance value defined in Eq. (21) is related to three pa-
rameters, the performance value of the current rule, the maximum
performance value in current iteration and the global minimum
performance value in the whole iterations. These parameters
continue to change at each iteration. Therefore, the rule perfor-
mance may vary with the iterations.

However, there is something interesting from the convergence
analysis. Though the optimal performance value is varying signifi-
cantly, the character string of the best rule does not refresh when
the number of iterations reaches a certain number. In this case, the
character string of the best rule always keeps as
= þ pt sr * sr sr pt nr sr pt nr after 34 iterations. This

observation demonstrates that the proposed GEP-RM algorithm
has good convergence ability.

Fig. 10 also shows that the performance values are evenly
distributed within the range of 30 at each iteration. Even if the
proposed GEP-RM algorithm has convergent to a best rule, the
performance values of all the rules are also evenly distributed in the



Table 2
Total energy consumption of GEPV.

J M 1 2 3 4 5 6 7 8 9 10 11

FT06 6 6 1495.9 1329.4 1359.9 1597.4 1451.1 1625.6 1602.1 1412.5 1298.9 1428.5 1307.9
FT10 10 10 43621.6 50721.8 45589 50946.7 51942.1 43619.8 44561.8 46576 50306.7 46724.9 42980.4
FT20 20 5 36823.1 34945.7 29220.6 30140.8 29930.7 29953.5 26998.7 27191.5 28379.1 33916.6 29818.2
LA01 10 5 19034.3 16463.4 18139.3 18153.6 17368.5 16493.4 16159.1 16716.1 16424.4 20133.8 19119.1
LA02 10 5 14936.8 16195.6 16524.3 14103.6 16707.8 19009.7 15995.6 15723.9 15074.6 14410.1 16437.2
LA03 10 5 13915.1 16497.9 14094.8 14220.8 14502.9 13026.5 14730.5 16562.7 17196.7 14593 15755.1
LA04 10 5 16857.6 14671.6 18941.4 15327.9 18289.1 18156.2 15907.6 15781.7 16263.5 14897.4 15669.7
LA05 10 5 14515.1 15197.9 14731.8 12229 14427.3 15552.6 14424.9 12546.5 15344.4 13020.6 14644.4
LA06 15 5 25581.8 21899.6 19615.7 23636.5 24454.4 22001.1 21283.3 27450.3 25753.8 21495.3 24019.2
LA07 15 5 20083.2 25347.9 22985.7 20522.9 22240.9 23071.6 23140.4 21848.4 23578.2 23457 20549.8
LA08 15 5 25506.3 24288.1 21276.6 23936.6 24653.6 22778.7 21574 19917.1 21800.6 22980.1 23459
LA09 15 5 26028.7 20358 23221.9 22489.1 25698.1 23224.4 22552.5 21918 21277.3 21636.8 25306.1
LA10 15 5 23498.5 28466.9 22715.1 29030.9 26109.4 27940.6 22713 28402.6 28087 27286.5 25422.9
LA11 20 5 27252.3 29545.3 26123.5 30451 28668.2 31443.7 33595.7 29264.1 30622.7 35366.1 35815.8
LA12 20 5 26803.9 30001.8 30171.7 24111.8 28895.1 29639.9 25807.1 30817.7 24368.5 23457.1 27447.3
LA13 20 5 29317.3 25243.5 26337.9 27257.6 26241.5 25189.1 25206.9 28436.7 28367.6 25197.5 26837.1
LA14 20 5 30480.8 29753.1 31686.4 27004 28254 28926.4 29478.3 28581 27840 29247 26236.1
LA15 20 5 31412.5 30499 32865.4 35293.7 33436.4 35206.9 31191.1 31505.5 32498.7 34328.5 31320.3
LA16 10 10 46860.9 45272.6 45417.6 44082.2 47933.3 46150 46249.2 41054.8 46500.5 44589.1 42995.8
LA17 10 10 39345.1 39012.2 39734.9 47036 38803.2 40630.8 41340 42421.7 38648.8 41926 38859.5
LA18 10 10 44987.6 42858.2 43324.8 41407 43696.8 42374.4 44661.8 41553.5 39936.6 44817.2 46896.5
LA19 10 10 42697.8 39864.5 41959.2 41246.4 41107.6 50347.5 43127.7 45972.4 47332.1 41634.6 39836.9
LA20 10 10 42294.3 50746.1 44376.7 46473.4 42523.3 46377.1 44356.8 49958.9 48590.1 41644.8 48272.6
LA21 15 10 57128.1 55139 56733.8 52703.6 60830.2 52364.6 55599.3 54807.4 54573.7 58360.7 56497.7
LA22 15 10 55956.1 51914.2 53198.9 50744.6 50224.9 53425 53843.9 54453.9 53661.2 58172.8 51980.9
LA23 15 10 50345.3 48857 50221.5 51407.7 50245.5 52182.6 55628.4 55213.7 51639.9 55113.3 58431.6
LA24 15 10 54282.7 60083.9 49621.6 57183.4 52108.8 59353.7 51762.1 55754.2 51286.5 52437.4 49833.2
LA25 15 10 65844.3 57383.9 48338.1 53717.9 58687.9 57749.7 51740 53706.5 60515.2 57714.6 56541.4
LA26 20 10 62304.7 67456.1 72547.7 67592.2 63975.2 66620.1 63730.5 69769.1 71259 66047.1 70362.5
LA27 20 10 65555.6 67634 68613.1 74500.3 63619.8 67573.7 64649.2 71524 71095.8 73750.6 60376.3
LA28 20 10 83688.8 68425.1 67706.8 68267.6 77769 68102.3 68678.1 66156.3 74406.3 77655.6 62724.2
LA29 20 10 64314.1 61254.6 63490 65680.1 74066.7 66426.3 66383.7 66167.2 64171.6 67558 66529.5
LA30 20 10 68963.8 72083.4 68836.3 68954.6 71942.6 76615.2 64960.2 64848.6 71607.7 75756.2 66600.7
LA31 30 10 94145.1 89520.7 81568.9 97189 100419 92565.1 96309.1 101261 90496.1 91547.7 88572.8
LA32 30 10 96634.5 104531 105691 104410 92361.8 105478 87671.1 100703 106755 98681.6 81450.2
LA33 30 10 90899.4 92741.7 88653.2 86862.6 96716.1 89441.8 87394 86502.6 89650.8 93884.6 94905.3
LA34 30 10 87458.4 101406 85609.9 97372.9 94898.2 93234.1 87649.4 90202.5 83302.9 83269.7 82922.1
LA35 30 10 97611.4 92632.2 92446.6 101713 89659.6 91352.5 90893.1 85672.5 103486 96258.1 102948
LA36 15 15 96025.6 107093 97435.9 97063.5 104080 105067 96671.4 97812 96432.2 94030.2 111668
LA37 15 15 100671 108300 110774 105867 114677 102813 101759 102192 103365 106041 101077
LA38 15 15 99628.2 96928.2 91775 94048 107513 92180.4 97270.1 97040.5 105304 93794.3 94464.9
LA39 15 15 99029 94242.5 93079.5 98567.6 96382.6 107202 105548 92323.2 99961.4 101101 94527.8
LA40 15 15 93334.4 97333.2 96396.6 96619.5 90077.4 93772.5 98362.1 93121.9 87605.4 98381.9 97443.4

Table 3
ANOVA for the problem size.

Source SS df MS F Prob> F

Problem size 4.06612� 1011 7 5.80874� 1010 1792.01 0
Error 1.50728� 1010 465 3.24147� 107

Total 4.21684� 1011 472

Table 4
ANOVA for the six new rules.

Source SS df MS F Prob> F

Rule 1.8843 5 0.37686 0.004 0.0096
Error 30.5097 252 0.12107 e e

Total 32.394 257 e e e
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solution space. The rule performance value has a direct relationship
with the current worst and global best rules, which are re-
evaluated and updated with the algorithm evolution. Therefore,
the rule performance value may fluctuate while the best rule keeps
the same character string after 34 iterations. This exhibits that the
diversity of the rule population is always kept throughout the
entire evolutionary process.
5.2.3. Performance comparison with classical dispatching rules
In order to compare the performance of the newmulti-attribute

rules, we conduct experiments to compare the discovered GEPV
with other existing dispatching rules using the 473 scenarios. A
brief description of the candidate dispatching rules is given in
(Nguyen et al., 2018). Eight dispatching rules are considered as the
candidate rules: (1) SPT to select the operation with the shortest
processing time, min

l2allowed
ptl; (2) LPT to select the operationwith the

longest processing time, max
l2allowed

ptl; (3) SSO to select the operation

belonging to the job that has the shortest subsequent operation,
min

l2allowed
nrl; (4) LSO to select the operation belonging to the job that

has the longest subsequent operation, max
l2allowed

nrl; (5) SRM to select

the operation belonging to the job that has the shortest remaining
processing time (excluding the operation under the current
consideration), min

l2allowed
ðsrl � ptlÞ; (6) LRM to select the operation

belonging to the job that has the longest remaining processing time
(excluding the operation under the current consideration),
max

l2allowed
ðsrl � ptlÞ; (7) MWKR to select the operation belonging to

the job that has the most remaining work, max
l2allowed

srl; (8) SWKR to
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Fig. 9. Multiple comparison of the six new multi-attribute rules.
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Fig. 10. Convergence graph of the GEP-RM algorithm.
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select the operation belonging to the job that has the smallest work
remained, min

l2allowed
srl.

Table 5 reports the results of the TEC among GEPV and the
classical dispatching rules under one scenario from 43 benchmarks.
The deviations of TEC mean the ratio of the difference between the
TEC and the minimal TEC in the range of TEC.

As illustrated in Table 5, 20 out of 43 scenarios calculated by
GEPV are significantly superior to other eight dispatching rules,
including SPT, LPT, SSO, LSO, SRM, LRM, MWKR, and SWKR.
Meanwhile, it can be seen that LSO, LRM and MWKR produce good
performance in solving the EEJSP because 12 scenarios in LSO, 6
scenarios in LRM, and 3 scenarios in MWKR are superior to others.
Moreover, the deviation value of only 2 scenarios in GEPV is larger
than 0.2 and the total deviation amount in GEPV is 3.004, which are
the minimum values among all dispatching rules. Especially, the
average deviation (0.07) of GEPV demonstrates that the TEC is close
to the optimal solution.

Based on the above findings and analysis, we can conclude that
GEPV produces satisfactory performance and robustness in solving
the EEJSP. Methodologically, in the design process of the proposed
GEP-RM algorithm, three attributes related to the TEC are high-
lighted and regarded as the terminal set. Four rulemining operators
including selection, mutation, transposition and recombination are
designed to train the rules via self-learning. Moreover, a
perturbation of rule mining mechanism is presented so as to avoid
the rules falling into the local optimum. As a result, the proposed
method is able to consider the TEC into the rule training scenarios.

The unconventional design of rule mining based on big data in
this research endows the new multi-attribute rules with superi-
ority in the following three aspects: (1) compared with the time-
related performance criteria in classical dispatching rules, mini-
mizing the TEC is a much reasonable objective for the energy effi-
cient scheduling problem; (2) based on the known information, the
abstracted multiple attributes make the implicit and complex
inherent relationship among all TEC related factors explicit and
visible; (3) the discovered rules via GEP-RM are revealed with
artificial intelligence including self-learning and unsupervised
learning, which is not an empirical combination of dispatching
rules.

5.2.4. Correlation analysis of TEC and makespan
According to Eq. (4), makespan is regard as a fraction to calculate

the TEC. Thus, we list the makespan of GEPV and the classical
dispatching rules in Table 5. The deviation of makespan is defined
in the similar way of defining the deviation of TEC. Though the
motivating examples reveal that TEC may have negative influence
on makespan, a positive correlation between them is observed in
Fig. 11.

The correlation coefficient r between them can be calculated by

r¼

P43
l¼1

�
El � E

��
Cl � C

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP43
l¼1

�
El � E

�2 P43
l¼1

�
Cl � C

�2s ¼ 0:851 (23)

where El and Cl are the TEC andmakespan for scenario l via GEPV. E
and C are the average energy consumption and makespan among
all scenarios via GEPV.

The TEC shows highly positive correlation with makespan
because the correlation coefficient r (0.851) is near 1. Generally,
machines with high unload power consume more energy than
those with low unload power when the idle time is the same. It is
obvious that in assigning jobs to machines, it would be better to
reduce the idle times as much as possible on the machines with
high unload power. This might sacrifice makespan and make the
distribution of the idle times unbalanced. Meanwhile, the mini-
mization of makepan might lead to schedules with low idle times.
Thus the idle times derived by the discovered rules may be evenly
distributed on each machine to enhance the machine utilization.



Table 5
Total energy consumption/deviation among GEPV and the classical dispatching rules.

J M SPT LPT LSO SSO LWKR MWKR LRM SRM GEPV

FT06 6 6 1941/0.76 1967/0.81 1475/0.04 1847/0.62 2092/1.00 1668/0.34 1449/0.00 2092/1.00 1496/0.07
FT10 10 10 49078/0.48 55096/1.00 45770/0.19 49882/0.55 54231/0.92 44785/0.10 44348/0.06 50708/0.62 43622/0.00
FT20 20 5 43695/1.00 39723/0.42 37564/0.11 39558/0.40 40429/0.52 37322/0.07 37449/0.09 41225/0.64 36823/0.00
LA01 10 5 24001/0.60 20735/0.21 20062/0.12 25278/0.75 27309/1.00 19564/0.06 19902/0.10 24367/0.64 19034/0.00
LA02 10 5 18738/1.00 17452/0.66 15569/0.17 17439/0.66 18590/0.96 16075/0.30 15642/0.19 18424/0.92 14937/0.00
LA03 10 5 16367/0.69 14998/0.30 14659/0.21 16979/0.86 17469/1.00 14589/0.19 15102/0.33 16673/0.78 13915/0.00
LA04 10 5 17657/0.22 18368/0.42 17513/0.18 19469/0.73 20454/1.00 17568/0.20 17356/0.14 19042/0.61 16858/0.00
LA05 10 5 19460/0.92 17390/0.57 13997/0.00 18799/0.81 19914/1.00 14511/0.09 14674/0.11 16534/0.43 14515/0.09
LA06 15 5 35011/0.80 28528/0.26 25904/0.04 33133/0.65 37328/1.00 25582/0.01 25951/0.04 36119/0.90 25452/0.00
LA07 15 5 21418/0.37 21610/0.41 20083/0.09 21767/0.44 24481/1.00 20177/0.11 20304/0.14 24068/0.91 19631/0.00
LA08 15 5 29765/0.66 27965/0.44 24420/0.00 31837/0.92 32491/1.00 25884/0.18 24896/0.06 29300/0.60 25506/0.13
LA09 15 5 34404/0.85 29495/0.35 26145/0.01 31815/0.59 35844/1.00 28054/0.21 26238/0.02 35662/0.98 26029/0.00
LA10 15 5 28618/0.71 24316/0.25 22047/0.00 28642/0.72 31244/1.00 24011/0.21 23926/0.20 27137/0.55 23499/0.16
LA11 20 5 33630/0.75 31645/0.52 27252/0.01 33209/0.70 34841/0.89 27741/0.07 27462/0.04 35774/1.00 27160/0.00
LA12 20 5 31066/0.48 28577/0.21 26804/0.01 30264/0.39 31326/0.51 28084/0.15 27008/0.03 35764/1.00 26710/0.00
LA13 20 5 38599/1.00 30082/0.12 28919/0.00 35793/0.71 34583/0.59 29593/0.07 29932/0.10 35246/0.65 29317/0.04
LA14 20 5 39295/0.98 34234/0.45 30414/0.05 36672/0.70 37808/0.82 31058/0.12 29901/0.00 39509/1.00 30481/0.06
LA15 20 5 34820/0.40 33780/0.29 30976/0.01 35134/0.43 40720/1.00 31158/0.02 30953/0.00 37547/0.68 31413/0.05
LA16 10 10 58407/1.00 49698/0.33 46394/0.08 51190/0.45 54284/0.69 45313/0.00 47030/0.13 57733/0.95 46861/0.12
LA17 10 10 48576/0.87 43892/0.53 36711/0.00 50338/1.00 50159/0.99 41166/0.33 38695/0.15 48435/0.86 39345/0.19
LA18 10 10 53259/0.82 52645/0.77 43750/0.00 51503/0.67 55346/1.00 45741/0.17 45267/0.13 49847/0.53 44988/0.11
LA19 10 10 50149/0.76 44685/0.37 39560/0.00 47242/0.55 53543/1.00 43852/0.31 44410/0.35 51877/0.88 42698/0.22
LA20 10 10 46303/0.38 50753/0.73 44257/0.21 54158/1.00 51007/0.75 41664/0.01 41571/0.00 51685/0.80 42294/0.06
LA21 15 10 70142/0.76 66986/0.57 57470/0.02 67159/0.58 74313/1.00 58724/0.09 57901/0.04 74260/1.00 57128/0.00
LA22 15 10 60239/0.44 61690/0.53 54856/0.10 64969/0.73 69295/1.00 53774/0.04 53165/0.00 66575/0.83 55956/0.17
LA23 15 10 63506/0.60 56262/0.27 55550/0.24 72018/0.99 72345/1.00 53171/0.13 50645/0.01 65020/0.67 50345/0.00
LA24 15 10 69244/0.98 64303/0.70 51868/0.00 65106/0.75 69538/1.00 54157/0.13 53832/0.11 68584/0.95 54283/0.14
LA25 15 10 83008/0.78 74119/0.42 64097/0.02 79787/0.65 87164/0.94 66090/0.10 63509/0.00 88652/1.00 65844/0.09
LA26 20 10 75200/0.73 70550/0.48 63665/0.12 76667/0.80 76902/0.82 61485/0.00 63474/0.11 80398/1.00 62305/0.04
LA27 20 10 78803/0.65 73870/0.41 66993/0.07 80288/0.73 85849/1.00 66276/0.04 68593/0.15 79364/0.68 65556/0.00
LA28 20 10 101117/0.65 89363/0.31 78633/0.00 98675/0.58 103993/0.73 87712/0.26 83617/0.14 113239/1.00 83689/0.15
LA29 20 10 79017/0.69 73684/0.44 65162/0.05 84171/0.93 85606/1.00 64314/0.01 64314/0.01 83208/0.89 64188/0.00
LA30 20 10 84804/0.52 83584/0.48 72118/0.10 95947/0.89 99189/1.00 71122/0.07 69660/0.02 90787/0.72 68964/0.00
LA31 30 10 104867/0.40 106245/0.44 90086/0.00 113560/0.64 116700/0.72 95641/0.15 92811/0.07 126880/1.00 94145/0.11
LA32 30 10 123607/0.77 118453/0.62 97966/0.05 120858/0.69 131938/1.00 96702/0.01 96313/0.00 127414/0.87 96635/0.01
LA33 30 10 105212/0.83 104116/0.78 85983/0.00 108428/0.97 109230/1.00 90808/0.21 92029/0.26 109001/0.99 90899/0.21
LA34 30 10 104692/0.67 104892/0.67 84535/0.00 107194/0.75 114715/1.00 88744/0.14 87098/0.08 107638/0.77 87458/0.10
LA35 30 10 114298/0.58 110493/0.44 97749/0.01 115808/0.63 126622/1.00 100201/0.09 99374/0.06 121509/0.82 97611/0.00
LA36 15 15 108651/0.39 108632/0.38 96675/0.02 111581/0.48 120294/0.74 96529/0.02 96928/0.03 128771/1.00 96026/0.00
LA37 15 15 117836/0.74 109234/0.37 105599/0.21 116866/0.70 123724/1.00 102848/0.09 102456/0.08 120361/0.85 100671/0.00
LA38 15 15 111682/0.59 115392/0.71 102146/0.27 124288/1.00 120461/0.87 93900/0.00 94912/0.03 121226/0.90 99628/0.19
LA39 15 15 107800/0.29 117658/0.61 99029/0.01 114307/0.50 124021/0.82 100961/0.07 100905/0.07 129690/1.00 98651/0.00
LA40 15 15 116325/0.69 110378/0.52 93407/0.04 108516/0.47 127028/1.00 98304/0.18 92106/0 119588/0.79 93334/0.04
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Therefore, the correlation of the TEC with makespan is positive in
most circumstances.
6. Conclusions

In this paper, we introduced a novel mixed-integer mathemat-
ical model to address the energy efficient job shop scheduling
problem. In addition, we developed a GEP-RM algorithm by
combining three attributes related to TEC in order to discover new
evolutional energy-efficient rules. The proposed GEP-RM algorithm
integrated unsupervised learning and swarm intelligence to opti-
mize population diversity and convergence. Because the proposed
method is based on artificial intelligence, it is flexible to incorporate
domain knowledge and expertise into the searching of dispatching
rules. Therefore, the obtained energy-efficient rules would
perfectly meet the requirement of minimum TEC. Moreover, this
paper also designs necessary rule mining operators to guarantee
the global exploration and local exploitation of the proposed al-
gorithm. Lastly, 473 scenarios were designed to test the perfor-
mance of the multi-attribute rules in this study. The main
conclusions are as follows:

(1) A novel mixed-integer mathematical model was formulated,
in which global event points and virtual operations are uti-
lized to describe precisely the energy efficient job-shop
scheduling.

(2) The rules generated by the rule mining algorithm have sig-
nificant superiority over existing dispatching rules in terms
of energy saving and production efficiency. Each of them can
be applied easily and conveniently like the typical rules in
real production.

(3) The TEC andmakespan are highly positive correlated in most
circumstances since the correlation coefficient r (0.851) is
near 1.

In future work, the proposed method will be applied to field
datasets acquired from practical production systems. New rules
hidden in the field datasets will be explored to solve real-world job-
shop scheduling problem.
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Fig. 11. Relationship between TEC and makespan.
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Table 4Total energy consumption/ deviation among GEPV and the classical dispatching r

J M SPT LPT LSO SSO

FT06 6 6 1941/0.76 1967/0.81 1475/0.04 1847/0.62
FT10 10 10 49078/0.48 55096/1.00 45770/0.19 49882/0.55
FT20 20 5 43695/1.00 39723/0.42 37564/0.11 39558/0.40
LA01 10 5 24001/0.60 20735/0.21 20062/0.12 25278/0.75
LA02 10 5 18738/1.00 17452/0.66 15569/0.17 17439/0.66
LA03 10 5 16367/0.69 14998/0.30 14659/0.21 16979/0.86
LA04 10 5 17657/0.22 18368/0.42 17513/0.18 19469/0.73
LA05 10 5 19460/0.92 17390/0.57 13997/0.00 18799/0.81
LA06 15 5 35011/0.80 28528/0.26 25904/0.04 33133/0.65
LA07 15 5 21418/0.37 21610/0.41 20083/0.09 21767/0.44
LA08 15 5 29765/0.66 27965/0.44 24420/0.00 31837/0.92
LA09 15 5 34404/0.85 29495/0.35 26145/0.01 31815/0.59
LA10 15 5 28618/0.71 24316/0.25 22047/0.00 28642/0.72
LA11 20 5 33630/0.75 31645/0.52 27252/0.01 33209/0.70
LA12 20 5 31066/0.48 28577/0.21 26804/0.01 30264/0.39
LA13 20 5 38599/1.00 30082/0.12 28919/0.00 35793/0.71
LA14 20 5 39295/0.98 34234/0.45 30414/0.05 36672/0.70
LA15 20 5 34820/0.40 33780/0.29 30976/0.01 35134/0.43
LA16 10 10 58407/1.00 49698/0.33 46394/0.08 51190/0.45
LA17 10 10 48576/0.87 43892/0.53 36711/0.00 50338/1.00
LA18 10 10 53259/0.82 52645/0.77 43750/0.00 51503/0.67
LA19 10 10 50149/0.76 44685/0.37 39560/0.00 47242/0.55
LA20 10 10 46303/0.38 50753/0.73 44257/0.21 54158/1.00
LA21 15 10 70142/0.76 66986/0.57 57470/0.02 67159/0.58
LA22 15 10 60239/0.44 61690/0.53 54856/0.10 64969/0.73
LA23 15 10 63506/0.60 56262/0.27 55550/0.24 72018/0.99
LA24 15 10 69244/0.98 64303/0.70 51868/0.00 65106/0.75
LA25 15 10 83008/0.78 74119/0.42 64097/0.02 79787/0.65
LA26 20 10 75200/0.73 70550/0.48 63665/0.12 76667/0.80
LA27 20 10 78803/0.65 73870/0.41 66993/0.07 80288/0.73
Simulation and Safety-Tianjin University (HESS-1901) and Taishan
Scholar (tsqn201812025).
Appendix A
ules

LWKR MWKR LRM SRM GEPV

2092/1.00 1668/0.34 1449/0.00 2092/1.00 1496/0.07
54231/0.92 44785/0.10 44348/0.06 50708/0.62 43622/0.00
40429/0.52 37322/0.07 37449/0.09 41225/0.64 36823/0.00
27309/1.00 19564/0.06 19902/0.10 24367/0.64 19034/0.00
18590/0.96 16075/0.30 15642/0.19 18424/0.92 14937/0.00
17469/1.00 14589/0.19 15102/0.33 16673/0.78 13915/0.00
20454/1.00 17568/0.20 17356/0.14 19042/0.61 16858/0.00
19914/1.00 14511/0.09 14674/0.11 16534/0.43 14515/0.09
37328/1.00 25582/0.01 25951/0.04 36119/0.90 25452/0.00
24481/1.00 20177/0.11 20304/0.14 24068/0.91 19631/0.00
32491/1.00 25884/0.18 24896/0.06 29300/0.60 25506/0.13
35844/1.00 28054/0.21 26238/0.02 35662/0.98 26029/0.00
31244/1.00 24011/0.21 23926/0.20 27137/0.55 23499/0.16
34841/0.89 27741/0.07 27462/0.04 35774/1.00 27160/0.00
31326/0.51 28084/0.15 27008/0.03 35764/1.00 26710/0.00
34583/0.59 29593/0.07 29932/0.10 35246/0.65 29317/0.04
37808/0.82 31058/0.12 29901/0.00 39509/1.00 30481/0.06
40720/1.00 31158/0.02 30953/0.00 37547/0.68 31413/0.05
54284/0.69 45313/0.00 47030/0.13 57733/0.95 46861/0.12
50159/0.99 41166/0.33 38695/0.15 48435/0.86 39345/0.19
55346/1.00 45741/0.17 45267/0.13 49847/0.53 44988/0.11
53543/1.00 43852/0.31 44410/0.35 51877/0.88 42698/0.22
51007/0.75 41664/0.01 41571/0.00 51685/0.80 42294/0.06
74313/1.00 58724/0.09 57901/0.04 74260/1.00 57128/0.00
69295/1.00 53774/0.04 53165/0.00 66575/0.83 55956/0.17
72345/1.00 53171/0.13 50645/0.01 65020/0.67 50345/0.00
69538/1.00 54157/0.13 53832/0.11 68584/0.95 54283/0.14
87164/0.94 66090/0.10 63509/0.00 88652/1.00 65844/0.09
76902/0.82 61485/0.00 63474/0.11 80398/1.00 62305/0.04
85849/1.00 66276/0.04 68593/0.15 79364/0.68 65556/0.00



(continued )

J M SPT LPT LSO SSO LWKR MWKR LRM SRM GEPV

LA28 20 10 101117/0.65 89363/0.31 78633/0.00 98675/0.58 103993/0.73 87712/0.26 83617/0.14 113239/1.00 83689/0.15
LA29 20 10 79017/0.69 73684/0.44 65162/0.05 84171/0.93 85606/1.00 64314/0.01 64314/0.01 83208/0.89 64188/0.00
LA30 20 10 84804/0.52 83584/0.48 72118/0.10 95947/0.89 99189/1.00 71122/0.07 69660/0.02 90787/0.72 68964/0.00
LA31 30 10 104867/0.40 106245/0.44 90086/0.00 113560/0.64 116700/0.72 95641/0.15 92811/0.07 126880/1.00 94145/0.11
LA32 30 10 123607/0.77 118453/0.62 97966/0.05 120858/0.69 131938/1.00 96702/0.01 96313/0.00 127414/0.87 96635/0.01
LA33 30 10 105212/0.83 104116/0.78 85983/0.00 108428/0.97 109230/1.00 90808/0.21 92029/0.26 109001/0.99 90899/0.21
LA34 30 10 104692/0.67 104892/0.67 84535/0.00 107194/0.75 114715/1.00 88744/0.14 87098/0.08 107638/0.77 87458/0.10
LA35 30 10 114298/0.58 110493/0.44 97749/0.01 115808/0.63 126622/1.00 100201/0.09 99374/0.06 121509/0.82 97611/0.00
LA36 15 15 108651/0.39 108632/0.38 96675/0.02 111581/0.48 120294/0.74 96529/0.02 96928/0.03 128771/1.00 96026/0.00
LA37 15 15 117836/0.74 109234/0.37 105599/0.21 116866/0.70 123724/1.00 102848/0.09 102456/0.08 120361/0.85 100671/0.00
LA38 15 15 111682/0.59 115392/0.71 102146/0.27 124288/1.00 120461/0.87 93900/0.00 94912/0.03 121226/0.90 99628/0.19
LA39 15 15 107800/0.29 117658/0.61 99029/0.01 114307/0.50 124021/0.82 100961/0.07 100905/0.07 129690/1.00 98651/0.00
LA40 15 15 116325/0.69 110378/0.52 93407/0.04 108516/0.47 127028/1.00 98304/0.18 92106/0.00 119588/0.79 93334/0.04
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Appendix B
Table 5
Makespan / deviation among GEPV and the classical dispatching rules

J M SPT LPT LSO SSO LWKR MWKR LRM SRM GEPV

FT06 6 6 83/0.7 79/0.59 60/0.08 71/0.38 94/1 67/0.27 57/0 94/1 58/0.03
FT10 10 10 1399/0.66 1534/1 1219/0.21 1410/0.69 1530/0.99 1178/0.11 1134/0 1415/0.7 1147/0.03
FT20 20 5 1581/0.46 1610/0.65 1611/0.66 1526/0.09 1513/0 1588/0.5 1662/1 1595/0.55 1539/0.17
LA01 10 5 920/0.44 889/0.38 846/0.29 1078/0.74 1210/1 735/0.08 747/0.1 1027/0.65 694/0
LA02 10 5 958/0.85 898/0.43 904/0.47 912/0.52 966/0.91 875/0.26 905/0.48 979/1 838/0
LA03 10 5 770/0.37 748/0.26 747/0.25 808/0.56 897/1 704/0.04 787/0.45 834/0.69 696/0
LA04 10 5 811/0.23 848/0.4 799/0.17 939/0.83 976/1 790/0.13 783/0.1 880/0.55 762/0
LA05 10 5 827/0.74 787/0.6 610/0 845/0.8 905/1 612/0.01 612/0.01 661/0.17 612/0.01
LA06 15 5 1369/0.77 1105/0.31 928/0 1268/0.6 1498/1 926/0 968/0.07 1439/0.9 926/0
LA07 15 5 1128/0.41 1145/0.47 1017/0 1141/0.46 1282/0.97 1031/0.05 1039/0.08 1289/1 1039/0.08
LA08 15 5 1168/0.54 1102/0.37 959/0 1256/0.76 1348/1 1011/0.13 1023/0.16 1134/0.45 1019/0.15
LA09 15 5 1332/0.74 1111/0.3 1005/0.09 1232/0.54 1384/0.84 1066/0.22 986/0.06 1463/1 957/0
LA10 15 5 1367/0.74 1136/0.32 958/0 1291/0.6 1509/1 1052/0.17 1031/0.13 1279/0.58 1010/0.09
LA11 20 5 1625/0.8 1476/0.48 1297/0.09 1664/0.89 1653/0.86 1316/0.13 1256/0 1715/1 1256/0
LA12 20 5 1330/0.48 1222/0.27 1127/0.09 1350/0.51 1423/0.65 1167/0.17 1140/0.11 1606/1 1080/0
LA13 20 5 1642/1 1246/0.19 1154/0 1530/0.77 1517/0.74 1191/0.08 1225/0.15 1522/0.75 1183/0.06
LA14 20 5 1663/0.79 1429/0.29 1292/0 1594/0.65 1669/0.81 1292/0 1297/0.01 1759/1 1292/0
LA15 20 5 1538/0.25 1516/0.21 1492/0.16 1510/0.2 1900/1 1415/0 1493/0.16 1778/0.75 1466/0.11
LA16 10 10 1557/1 1244/0.33 1089/0 1183/0.2 1371/0.6 1118/0.06 1124/0.07 1547/0.98 1216/0.27
LA17 10 10 1236/0.68 1145/0.51 860/0 1261/0.72 1416/1 1004/0.26 895/0.06 1295/0.78 915/0.1
LA18 10 10 1259/0.75 1264/0.76 989/0.04 1182/0.55 1353/1 983/0.02 1027/0.14 1174/0.53 975/0
LA19 10 10 1352/0.94 1140/0.36 1058/0.13 1208/0.54 1302/0.8 1089/0.22 1061/0.14 1375/1 1009/0
LA20 10 10 1331/0.59 1390/0.72 1199/0.28 1513/1 1447/0.85 1076/0.004 1074/0 1463/0.89 1105/0.07
LA21 15 10 1719/0.84 1519/0.48 1336/0.15 1610/0.65 1806/1 1314/0.11 1304/0.09 1760/0.92 1253/0
LA22 15 10 1392/0.43 1409/0.46 1251/0.19 1434/0.5 1736/1 1135/0 1168/0.05 1686/0.92 1221/0.14
LA23 15 10 1480/0.54 1330/0.27 1351/0.3 1717/0.96 1737/1 1258/0.14 1214/0.06 1587/0.73 1183/0
LA24 15 10 1561/0.88 1472/0.7 1111/0 1532/0.82 1624/1 1178/0.13 1181/0.14 1618/0.99 1164/0.1
LA25 15 10 1691/0.74 1382/0.3 1207/0.05 1562/0.56 1849/0.97 1209/0.05 1173/0 1869/1 1205/0.05
LA26 20 10 1856/0.65 1746/0.48 1568/0.2 1952/0.8 1989/0.85 1439/0 1535/0.15 2084/1 1460/0.03
LA27 20 10 2004/0.73 1776/0.35 1665/0.16 1955/0.65 2161/1 1595/0.04 1619/0.08 2009/0.74 1571/0
LA28 20 10 2013/0.65 1668/0.2 1514/0 2007/0.64 2145/0.82 1631/0.15 1562/0.06 2283/1 1569/0.07
LA29 20 10 1993/0.77 1695/0.35 1488/0.07 2008/0.79 2154/0.99 1452/0.02 1555/0.16 2161/1 1441/0
LA30 20 10 2100/0.63 1893/0.4 1643/0.13 2322/0.87 2444/1 1566/0.05 1520/0 2110/0.64 1556/0.04
LA31 30 10 2352/0.45 2392/0.49 1900/0 2555/0.65 2783/0.87 2057/0.16 1987/0.09 2912/1 1987/0.09
LA32 30 10 2653/0.73 2609/0.68 2059/0.07 2731/0.81 2899/1 1993/0 2005/0.01 2804/0.9 1992/0
LA33 30 10 2292/0.66 2302/0.67 1863/0 2501/0.98 2514/1 1973/0.17 2005/0.22 2514/1 1973/0.17
LA34 30 10 2564/0.73 2480/0.63 1940/0 2491/0.64 2798/1 2016/0.09 2047/0.12 2607/0.78 1987/0.05
LA35 30 10 2488/0.46 2335/0.26 2321/0.24 2594/0.6 2895/1 2136/0 2203/0.09 2682/0.72 2141/0.01
LA36 15 15 1851/0.41 1789/0.33 1602/0.12 1831/0.38 2218/0.84 1513/0.01 1514/0.01 2359/1 1502/0
LA37 15 15 2075/0.81 1940/0.55 1737/0.17 1919/0.51 2176/1 1680/0.06 1691/0.08 2151/0.95 1649/0
LA38 15 15 1819/0.64 1912/0.81 1582/0.23 2024/1 1928/0.83 1456/0.01 1449/0 2005/0.97 1558/0.19
LA39 15 15 1790/0.35 2064/0.71 1594/0.1 1908/0.5 2102/0.76 1552/0.04 1651/0.17 2289/1 1520/0
LA40 15 15 2048/0.75 1829/0.46 1506/0.02 1867/0.51 2231/1 1604/0.15 1493/0 2006/0.7 1497/0.01
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Glossary

Oij: the jth operation of the ith job, where i ¼ 1;2; :::;n; j ¼ 1; 2; :::; jJij
pij: the processing time of operation Oij
mij: the machine that has been predefined to perform the operation Oij
TEC: the total energy consumption
DEC: the direct energy consumption
IEC: he indirect energy consumption
PCij: the cutting power of operation Oij
PUk: the unload power of machine k
EUk: the total unload energy consumption of machine k
T: set of global event points symbolizing operations to be sequenced, T ¼ ftjt ¼ 1;2;

:::; Lg
Itk: the idle time of machine k
SMkt : the starting time of machine k at sequence t
CMkt: the completion time of machine k at sequence t
COij: continuous variable, the completion time of the operation Oij
Cmax: continuous variable, makespan or the completion time of the last operation
Yijs: binary variable. It equals to 1 if Oij is the sth operation in the requested

sequence; otherwise, 0
a: the coefficient of Stute power balance equation
b: the coefficient of indirect energy consumption
M: parameter, a big number
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